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ABSTRACT 

Longitudinal studies provide valuable insights into changes and factors influencing 

responses over time, but inappropriate methods can lead to erroneous results. This study 

evaluates longitudinal data analysis methods for estimating antibody titres, focusing on 

correcting inappropriate commonly used methods and providing recommendations for 

optimal statistical inference. The study contributes to the knowledge base in Malawi 

and addresses the gap in appropriate longitudinal modelling techniques. Using 

inappropriate statistical methods in longitudinal data analysis can yield misleading 

results, affecting the validity and reliability of research findings. Addressing this issue 

is crucial for ensuring accurate estimation of antibody titres. In this, study a comparative 

approach was employed, analyzing both real-world and simulated data to assess the 

performance of different modelling techniques. A longitudinal censored mixed model 

used in the simulated data to account for lower limits of detection and contrasted this 

to imputations of censored values to 0, DL/2, DL, and complete case analysis. Censored 

regression models and imputations were used for non-linear, non-longitudinal PCVPA 

data. Raw data used arithmetic means, while log-transformed data used geometric 

means. The longitudinal aspect of the data is accounted for through random effects. By 

simulating ELISA data with known vaccination and age effects evaluated the 

effectiveness of statistical models in estimating antibody concentrations. The analysis 

of both real-world and simulated data reveals significant insights into the performance 

of different statistical methods. Findings indicate that certain models perform poorly in 

capturing the effects of age, exposure, and gender. However, the censored model stands 

out by providing estimates closer to the true values and narrower confidence intervals, 

particularly in intercept estimation. The comparison between real-world and simulated 

data underscores the importance of selecting appropriate statistical methods for 

longitudinal data analysis. The study's results emphasize the significance of the 

censored model in improving estimation accuracy and reducing bias. Thereby, 

enhancing understanding of longitudinal data analysis for antibody titres, contributing 

to advancing statistical inference in research. 
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CHAPTER 1 

 

INTRODUCTION 

This chapter presents the brief background of the study, the knowledge gaps that were 

identified, the objectives of the study and the importance of the study. 

 

1.1 Background 

1.1.1 Background to Antibody Titres 

Antibodies are specific chemicals that bind to the antigens used for their production 

(Crowther, 2000)  . They are produced in response to antigenic stimuli and are mainly 

protein in nature. They belong to a group of serum known as globulins, they are also 

known as immuno-globulins because of their immune response functions. Antibodies 

are subdivided into five subtypes known as IgA, IgD, IgE, IgG and IgM based on 

molecular size, structure and function (Crowther, 2000). According to Crowther (2001) 

antibody titres measure how much antibody for specific pathogens an organism has 

produced. The enzyme-linked immuno-absorbent assay (ELISA) system is widely used 

for measuring antibody titres and antigens. 

 

There are two main approaches to estimating antibody titers from ELISA data; that is 

Standard curve fitting and endpoint titration. In standard curve fitting method it 

involves fitting a standard curve by plotting the optical density (OD) or other 

measurement values against known concentrations of the antibody standards. The 

unknown antibody concentrations can then be determined by interpolating their OD 

values onto the standard curve (Yang et al., 2016). Whilst in endpoint titration the 

sample is serially diluted, and the endpoint titer is defined as the reciprocal of the 

highest dilution that gives a reading above a pre-determined cut-off value or threshold 

(Yang et al., 2016). The cut off is chosen for each dilution step to determine the 

endpoint titer. 

 

Recent studies have highlighted some limitations and potential improvements to these 

antibody titer estimation methods, these limitations include introducing errors which 
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leads to biases in model fitting and potentially misrepresenting lower concentration 

limits. Therefore, it is recommended that these lower limits must be validated to ensure 

the accuracy of antibody titer measurements.  

 

There are different end point titers, which are limit of detection, limit of quantitation 

and limit of blank all these are used to describe the smallest concentration of an analyte 

that can be reliably measured by an analytical procedure (Armbruster & Pry, 2008). 

Limit of blank (LoB) according to Epi 17 protocol guideline it is defined as the highest 

apparent analyte concentration expected to be found when replicates of blank sample 

containing no analyte are tested (Armbruster & Pry, 2008) and this is given by LoB = 

mean blank + 1.645 (standard deviation of blanks). The (lower) limit of detection (LoD) 

is the lowest analyte concentration likely to be reliably distinguished from LoB and at 

which detection is feasible. It is determined by using both test replicates of a sample 

known to contain low concentration and also measured limit of blank which is deduced 

as LoD = LoB + 1.645 (standard deviation of low concentration sample). The (lower) 

limit of quantification (LoQ) is defined as the lowest concentration of an analyte that 

can not only be detected but also measured up to predefined targets of accuracy and 

precision (Armbruster & Pry, 2008). By definition LoQ ≥ LoD > LoB. 

 

Below is a graph illustrating the difference between limits of blank, detection, and 

quantification, according to guideline EP17, Protocols for Determination of Limits of 

Detection and Limits of Quantification which was published by Clinical Laboratory 

and Standards Institute (Tholen, 2004). 

 

 

 

 

 

 

 

Figure 1: Illustrating the relationship between LoB, LoD and LoQ, the solid line 

represents the results distribution of LoB, the dashed line represents the results 

distribution of LoD and the dotted line represents the results distribution of LoQ.  
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As it has been mentioned, recent studies have made significant advancements in the 

estimation of antibody titers, particularly focusing on improving accuracy and 

addressing limitations that have been mentioned above in the existing methods. The 

key points that were highlighted are; addressing measurements challenges, studies have 

addressed challenges related to measurements falling below the limit of detection 

(LOD) in antibody assays. New approaches, like the adjustment for Bi-censoring 

(ABC) method, have been developed to handle measurements below the LOD 

effectively, ensuring more robust estimations of antibody titers across various assays, 

including the hemagglutination inhibition assay (HAI) (Ge et al., 2022). But little has 

been done on data that is below detection limit. Another is adjusting for censored data 

and simulation studies.  

 

In adjusting for censored data came up in order to mitigate biases introduced by values 

below the LOD, recent studies have proposed novel methods to adjust coefficient 

estimates, accounting for the censored nature of these measurements. By applying these 

adjustments, researchers can obtain more accurate estimates of antibody titer increases, 

particularly in the context of vaccine studies (Ge et al., 2022). This is one of the methods 

that has been taken into account in this study. 

 

Simulation studies, this is a key cornerstone in this thesis. Although several simulation 

studies have been conducted to mimic real-world scenarios in antibody assays, 

generating data that closely resembles actual assay results. And also even these 

simulations have been instrumental in developing and validating new methods for 

estimating antibody titers, ensuring reliable and unbiased measurements(Ge et al., 

2022). Little has been done on data that is censored to the left and have detection limit 

at the same time longitudinal nature. 

 

1.2 Problem statement 

In this thesis longitudinal dataset of IgG antibody data which contained some missing 

values and subject to a pre-specified LoD was used. Often, antibody titre data are 

analyzed using imputation techniques and other methods like calculation of the 

arithmetic mean and fitting simple linear regression without considering the nature of 

concentration data, censored data, or longitudinal data. 

 



4 
 

Statistically, data below the LoD / LoQ (identical in the data for the present study) are 

left censored. There are many methods to handle such censored observations, some 

based on statistical theory, some on heuristic. One commonly used method involves 

discarding censored observations; this is used when you know that the data does not 

contain the information you need. Simple imputation techniques form another 

approach. Missing data are substituted with fixed values (typically either 0, the 

LoD/LoQ or a value half-way between 0 and the LoD/LoQ). While simple imputation 

maintains the sample size, and is easy to use, it artificially reduces variability, thus 

underestimating the variance and standard deviation of the data. 

 

Another approach is the use of non-parametric methods, which are based on fewer 

assumptions. For example, non-parametric methods like the Wilcoxon rank-sum test 

may also work well in antibody titre data. Apart from a marginal reduction in power, 

these non-parametric methods has some limitations. The main limitation is that non-

parametric methods do not extend easily to more sophisticated analyses where you 

adjust for covariates or confounders and they do not help at all when your goal is 

estimation or prediction (as opposed to identifying associations).  

 

Furthermore, Censored regression techniques, borrowing ideas from time-to-event 

analysis have been available for some time for example, Tobit regression which treat 

data below the lower limit of detection (LOD) as censored data and it accounts for both 

left and right censoring in the data. and the techniques from survival analysis are mostly 

used for estimating parameters. 

 

However, in the context of antibody titre or ELISA, it is also important to work on the 

log scale, given the nature of data generation. For instance, the geometric mean is 

meaningful compared to the arithmetic mean. This natural log scale arises because it is 

more important to know when the values are halving or doubling than a change in 

absolute value. 

 

But what is less clear is how to incorporate these ideas into longitudinal analyses where 

data are correlated and statistical models need to account for that. So, in summary, there 

are three main challenges for longitudinal data analysis of antibody titre data which we 

aim to address in a single analysis framework: 



5 
 

• Left-censored data due to a LoD/LoQ. 

• Longitudinal / correlated data. 

• Skew data where the focus of analysis is on relative not absolute change. 

To this end, this thesis will investigate the impact of ignoring these challenges and using 

simple, sub-optimal but easier to use techniques. 

 

1.3 Study objectives 

The main objective is to assess the impact on statistical inference of sub-optimal 

analysis methods. 

Specifically, the study wants to; 

• To quantify the bias and the underestimation of variance due to simple 

imputation methods. 

• To quantify the impact of ignoring the logarithmic scale on data interpretation.  

• To evaluate whether the above issues are exacerbated in a longitudinal data 

setting. 

 

1.4 Significance of the study 

There are several impacts if statistical inference is not properly done. For instance, as 

already discussed above, analysing longitudinal antibody titre data using imputation 

techniques and using arithmetic mean instead of geometric mean models poses 

challenges as bias is introduced and variance is underestimated. And also, it affects 

interpretation, for it is more difficult to interpret absolute value than relative change, 

and it is also harder to compare two groups. The statistical approaches explored and 

used in this study reduce the bias mentioned and provide a principled approach to 

analysing antibody titre data and correct ways to deal with such data. 

 

This study will primarily show the correct ways of dealing with this data and clearly 

show how wrong results can be if sub-optimal methods are used. The research report 

will add to the longitudinal analysis knowledge base that is currently available in 

Malawi. Besides, the study will also correct the inappropriate methods that are mostly 

used, assess their implications, and make recommendations on the best type of 

longitudinal model to use for estimating antibody titres. 
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1.5 Thesis structure 

The thesis is structured as follows: Chapter 2 gives a literature review of different model 

diagnostic statistics. Chapter 3 describes the methodology used for this study. Chapter 

4 presents the results. Chapter 5 provides a discussion, a conclusion, and 

recommendations. 
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CHAPTER 2 

 

LITERATURE REVIEW ON METHODS 

This chapter reviews the literature on statistical analysis methods that are used in 1) 

longitudinal data analysis, and 2) analysis of antibody titre data. As part of this, the 

chapter also touches on the concept of geometric and arithmetic means and on censored 

regression techniques. 

 

2.1. Overview of longitudinal data analysis. 

Longitudinal studies involve the repeated measurement of individuals over time to 

study changes in responses and the factors influencing these changes (Fitzmaurice et 

al., 2011). Weiss (2005) expands this definition to include the collection of outcomes, 

treatments, or exposures at multiple follow-up times, emphasizing the importance of 

temporal ordering in longitudinal data analysis. This type of data is described as 

multivariate and hierarchical, with observations nested within subjects (Weiss, 2005). 

The structure of longitudinal data, characterized by multiple observations within 

subjects ordered across time, necessitates consideration of its unique properties for 

analysis (Fitzmaurice et al., 2011). Hedeker & Gibbons (2006) highlight the advantages 

of longitudinal studies, noting their increased power compared to cross-sectional 

studies due to the independent information provided by repeated measures. 

Additionally, each subject acts as their own control, reducing intra-subject variability 

relative to inter-subject variability. 

 

Longitudinal studies allow for the separation of temporal effects within individuals 

from cohort effects at baseline (Hedeker & Gibbons, 2006). This distinction is crucial 

in understanding changes over time and considering different time scales such as cohort 

and period effects. In contrast, cross-sectional studies may confound aging effects with 

cohort differences (Brown & Prescott, 2015). 

 

Despite the benefits of longitudinal studies, challenges exist, such as the non-

independence of data observations within individuals, requiring sophisticated statistical 
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methods to address this dependency (Hedeker & Gibbons, 2006). Parameter estimation 

for certain models can be computationally intensive due to iterative processes and the 

lack of closed-form solutions. 

 

Attrition, leading to missing data as participants drop out over time, poses a significant 

challenge in longitudinal studies (Hedeker & Gibbons, 2006). Reasons for attrition, like 

perceived lack of benefit or adverse effects, can introduce bias and impact the sample's 

representativeness, potentially affecting the generalizability of findings. 

 

Proper statistical analysis of longitudinal data must account for the intra-subject 

correlation of response measurements to ensure valid inference (Fitzmaurice et al., 

2011). Neglecting this correlation can lead to invalid results, affecting confidence 

intervals and the outcomes of statistical tests. 

 

In summary, longitudinal data analysis methods account for multiple observations 

within subjects ordered across time, addressing challenges such as non-independence, 

missing data, and the need to properly model intra-subject correlation for accurate 

statistical inference. 

 

2.2 Geometric mean and Arithmetic mean. 

The sample mean which is the arithmetic mean is the most frequently used statistic for 

summarizing research data in applications in which the response of interest is measured 

on a continuous scale (Olivier et al., 2008).  The arithmetic mean (AM) captures the 

average value for a series of numbers, mathematically it can be represented as; 

𝑋̅ =
1

𝑛
∑𝑋𝑖,

𝑛

𝑖=1

                                                            (1) 

Where n is the number of observations and 𝑋𝑖 is the 𝑖 −𝑡ℎ observation of the random 

variable 𝑋, 𝑖 = 1, … , 𝑛. 

The geometric mean (GM) is obtained by calculating the nth root root of the product of 

a collection of n numbers and is a measure of central tendency (Olivier et al., 2008). 

To come up with geometric mean formula let’s consider 𝑋1, 𝑋2, … , 𝑋𝑛 then geometric 

mean is defined as; 

𝐺𝑀 = √𝑥1𝑥2…𝑥𝑛
𝑛                                           (2) 
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This can also be written as; 

𝐿𝑜𝑔𝐺𝑀 = 
1

𝑛
log(𝑥1𝑥2…𝑥𝑛)                             (3) 

=
1

𝑛
(log 𝑥1 + 𝑙𝑜𝑔𝑥2 +⋯+ 𝑙𝑜𝑔𝑥𝑛) 

=
∑ 𝑙𝑜𝑔𝑥𝑖
𝑛

 

𝐺𝑀 = exp (
∑ 𝑙𝑜𝑔𝑥𝑖
𝑛

)                                                     (4) 

The main distinction between geometric and arithmetic means is that, in order to 

determine the geometric mean, all the n numbers in the given data set must be 

multiplied, and the observed result must be taken as the nth root. The arithmetic mean 

is determined by adding up the n numbers in the dataset and dividing by n. 

 

2.3. Bootstrap method 

Bootstrapping is a resampling procedure that uses data from a sample to generate a 

sampling distribution by repeatedly taking random samples from the known sample 

with replacement (Cameron & Pravin, 2005) it is also defined as simulation methods 

for frequentist. It is one of the widely applicable computer intensive statistical tools that 

can be used to yield estimates of parameters that are difficult to estimate otherwise. The 

bootstrap method is commonly used in case where there is complicated statistic and no 

analytical formula is available (Wehrens et al., 2000).  

The fundamental idea in bootstrap is repeatedly draw samples with replacement from 

the observed data to simulate the variability inherent in the data collection process. For 

instance, given an observed dataset 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛), the bootstrap procedure 

involves generating multiple bootstrap samples denoted as 𝑋∗ = (𝑥1
∗, 𝑥2

∗, … , 𝑥𝑛
∗), by 

randomly selecting observations with replacement (Davison & Hinkley, 1997). The key 

concept is using these resampled datasets to approximate the sampling distribution of a 

statistic of interest. 

 

Given a bootstrap sample 𝑋∗, calculating the statistic of interest, denoted as 𝜃∗; 

𝜃∗ = 𝑔(𝑥1
∗, 𝑥2

∗, … , 𝑥𝑛
∗)                                    (5) 

Thereafter, this process is repeated for several times (B iterations) to create an empirical 

distribution of 𝜃∗. The result is the collection of bootstrap statistic 𝜃1
∗, 𝜃2

∗, … , 𝜃𝐵
∗  

(Davison & Hinkley, 1997). 
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The aim of this empirical distribution is to use it to make statistical inferences. For 

example, one can estimate the confidence interval for the population parameter by 

determining the range between the 𝛼 2⁄  -th and 1 − 𝛼 2⁄ -th percentiles of the bootstrap 

statistic: 

(𝜃𝛼 2⁄
∗ , 𝜃1−𝛼 2⁄

∗ )The bootstrap method can be applied in several ways; bootstrap in 

hypothesis testing, bias reduction, confidence intervals and estimation of standard 

errors (Cameron & Pravin, 2005). In this thesis bootstrap confidence intervals were 

used in real world PCVPA data to come up with confidence bands. Bootstrap 

confidence intervals offer several advantages, they are versatile, applicable to various 

statistical problems and particularly useful when underlying distribution is unknown or 

complex. Additionally, bootstrap confidence intervals can be constructed for almost 

any statistic making them a valuable tool for statistical inference. 

 

In general, bootstrap methods provide a powerful and widely applicable tool in 

statistics, to assess uncertainty and derive confidence intervals in the absence of 

distribution information. The methods simplicity and ability to provide reliable 

estimates for a variety of statistical problems makes it widely used (Davison & Hinkley, 

1997). 

 

2.4 Censoring   

Censoring occurs when the event of interest is not observed for some subjects because 

either 1) it occurred before the study started (left censoring), 2) it did not occur before 

the study is terminated (right censoring) or 3) it occurred between study visits (interval 

censoring). When censoring occurs, the researcher has only partial information about 

the subjects for which censoring occurred (Turkson et al., 2021). Censoring is common 

in survival analysis for it represents a form of missing data (Kleinbaum & Klein, 2005). 

In survival analysis, almost all censoring is right censoring and there are three broad 

reasons why right censoring might occur; a person is lost to follow up during the study 

period, a person withdraws from the study or a person does not experience the event 

before the study ends (Kleinbaum & Klein, 2005). Longitudinal data are also sometimes 

censored, for the same reasons as in survival analysis, but also due to study design (e.g. 

when study visits are scheduled which can lead to interval censoring) or because an 

event of interest has already occurred before the study started. 
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As already mentioned above, there are three types of censoring, right censoring, left 

censoring and interval censoring (Turkson et al., 2021). Right censoring is widely 

known for it is common in survival analysis as well as longitudinal analysis, it occurs 

when individuals have not experienced the event of interest by the end of the study or 

the last available follow-up time. For example, if we assume that there is a time T and 

a censoring time b, theT’s are independently and identically distributed with probability 

function 𝑓(𝑡) and survival function 𝑆(𝑡). The exact life time T of a subject will be 

known, if and only if T is less than or equal to b; if T is greater than b, the subject is a 

survivor and his event time is censored at b. The data from this experiment can be 

represented by pairs of random variables(𝐾, 𝛿), where 𝛿indicates whether the lifetime 

corresponds to an event(𝛿 = 1) or is censored(𝛿 = 0), and K is equal to T if the 

lifetime is observed and b if it is censored. For a right-censoring 𝐾 = min (𝑇𝑖, 𝑏), where 

K is some time variable and a and b some points in time (Klein & Moeschberger, 2003) 

(Klein & Moeschberger, 1997). 

 

Interval censoring occurs when the event of interest is known to have occurred within 

a specific time interval but the exact timing within that interval is unknown. In other 

words, it can be by study design ; for example, study visits every 6 months, but that 

participant experiences an event of interest (say heart attack) between visits, or no exact 

date known just that it occurred between two schedule visits i.e. (a<T<b) (Turkson et 

al., 2021) In this type of censoring the observed data consist of intervals 

𝐼1,𝐼2, … , 𝐼𝑚where for each 𝑘 = 1, 2, … ,𝑚 where k is the number of time intervals and 

m is the total number of time intervals. In this case an uncensored observation of an 

observed death corresponds to an observed interval consisting of a single point 

(Turkson et al., 2021). This type of censoring commonly occurs when periodic 

assessments of the outcome event of interest is done at discrete time points rather than 

continuously.  

 

This thesis focused on this left censoring. Typically, this occurs when the event of 

interest has already occurred before enrolment. Left censoring is very rare for studies 

observing events but it is commonly encountered in laboratory data when dealing with 

continuous data subject to detection limits. 
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To define left-censoring, for example, a time X associated with a specific subject in a 

study is considered to be left censored if it is less than censoring time a. For left 

censoring to occur the event of interest must occur for the subject before that person is 

observed in the study at time a (T<a). For such subjects since they have already 

experienced the event sometime before time a, but the exact time is not known. 

Therefore, the exact time will be known if and only if X is greater than or equal to a. 

The data from a left censored sampling scheme can be represented by pairs of random 

variables(𝑇, 𝛿), where T is equal to X if the lifetime is observed and 𝛿indicates whether 

the lifetime corresponds to an observed event (𝛿 = 1)or is censored(𝛿 = 0), for left 

censoring 𝑇 = max (𝑋𝑖, 𝑏) (Turkson et al., 2021) . In laboratory studies, the 

measurement of the analyte is equivalent to the event time in event time data. Here, left 

censoring occurs if there is a lower limit below which the laboratory assay cannot yield 

a valid measurement anymore. Value below this lower limit of detection are left 

censored. 

 

 Klein et al (2003) concluded that left censoring is a special case of right censoring with 

the time axis reversed, and it is for this reason there have been few special techniques 

developed solely for left censored data. 

 

In addition to afore mentioned reasons of censoring, censoring can also be due to events 

of interest. When this happens, it becomes informative censoring and this introduces 

bias. In most longitudinal analyses, it is assumed that censoring is non-informative or 

random. This occurs when the probability of censoring is unrelated to the event of 

interest or the censoring is considered independent of the underlying survival time or 

outcome. 

 

2.4.1 Methods for censored data 

There are several methods of handling censored data, depending on the nature of 

censoring. As previously stated, censoring can be of 3 ways; either censoring to the 

right, censoring to the left and interval censoring. Some of the methods commonly used 

in handling censored data include likelihood-based approaches, imputation approaches, 

dichotomizing the data and complete data analysis (Turkson et al., 2021). 
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Likelihood-based approaches use estimation methods, which involve constructing a 

likelihood function that models the probability distribution of both observed and 

censored values., and many of these methods maximizes the likelihood under certain 

model assumptions, including the censoring mechanism. This type of approaches 

includes Kaplan- Meier, log-rank test and the Cox regression (Turkson et al., 2021).  

The Kaplan-Meier method also called the product limit estimator is the most popular 

method when dealing with survival analysis for it requires weak assumptions i.e. 

assumes no distribution but it utilizes all the information i.e. right censored data and 

fully observed data (Hosmer et al., 2008). It is a non-parametric method used to estimate 

survival probability S(t) from observed survival times (Hosmer et al., 2008). Let 0 ≤

𝑡1 < ⋯ < 𝑡𝑛 be the observed death times, let 𝑛𝑖 be the number of individuals at risk. 

And let 𝑑𝑖 be the number of observed deaths at 𝑡𝑖 , 𝑖 = 1,… , 𝑛 then the Kaplain-Meier 

estimator is given by; 

𝑆̂(𝑡) = ∏
𝑟𝑖 − 𝑑𝑖
𝑟𝑖

=

𝑖:𝑇𝑖≤𝑡

∏(1−
𝑑𝑖
𝑟𝑖
)

𝑖:𝑇𝑖≤𝑡

                                (6) 

 

Where 𝑟𝑖 is the number of individuals at risk right before the ith death time. 

 

The log-rank test also called the Mantel-Haenszel test (when comparing only 2 curves), 

is a statistical significance test that is used compare two or more groups. This test is 

also obtained by constructing a 2x2 table at each distinct death time, and comparing the 

death rates between the two groups conditional on the number at risks in the groups 

(Collet, 2004). Considering the null hypothesis there is no difference between survival 

population curves. i.e. the probability of an event occurring at any time point is the 

same for each population. The test statistic is calculated as follows 

𝜒2(𝑙𝑜𝑔𝑟𝑎𝑛𝑘) =
(𝑂1 − 𝐸1)

2

𝐸1
+
(𝑂2 − 𝐸2)

2

𝐸2
                                  (7) 

Where 𝑂1 and 𝑂2 are the total numbers of observed events in groups 1 and 2, 

respectively and 𝐸1 and 𝐸2 are total numbers of expected events. 

Then the Cox regression or the Cox Proportional Hazard model is a semi-parametric 

model. It is semi-parametric because it makes no parametric assumptions regarding the 

baseline hazard.  The Cox proportional hazard model makes parametric assumptions 

concerning the effect of the predictors on the hazard function but makes no assumption 



14 
 

regarding the nature of the hazard function 𝜆(𝑡) (Harrell, 2001). Since the only 

assumption made is on proportionality of the baseline hazard, therefore, it means that 

the hazard ratio is constant over time (Collett, 2015). PH is the common approach used 

in research to model the effects of covariates on survival. It can be defined as; let 

𝑦1, … , 𝑦𝑗 be the values of j covariates 𝑌1, … , 𝑌𝑗, then the hazard function is given as the 

following model (Cox regression model); 

ℎ(𝑡) = ℎ0(𝑡) exp (∑ 𝜎𝑖𝑦𝑖
𝑗

𝑖=1
)                                                     (8) 

Where 𝜎𝑖 = 𝜎1, 𝜎2, … , 𝜎𝑛 is a 1 x j of regression coefficients and ℎ0(𝑡) is the baseline 

hazard function at time t. 

 

Furthermore, when analyzing left-censored data using Kaplan-Meier survival analysis 

and Cox proportional hazards regression, it is essential to handle the inherent 

uncertainty about the exact event times. For Kaplan-Meier, left-censored events can be 

treated as tied events occurring at time zero, assuming they happened at the earliest 

possible time. This involves considering censored events at time zero as if they occurred 

simultaneously. In Cox regression, left-censored data can be included by treating it as 

regular censored data, assuming that censoring at time zero is non-informative. The 

Cox model assumes that the probability of censoring at a given time is unrelated to the 

probability of the event occurring. 

 

A common type of method of handling censored data, particularly left-censored 

concentration data from laboratory experiments, is given by various imputation 

techniques. These methods have several disadvantages, specifically the introduction of 

bias and under-estimation of variance. These methods depend on model assumptions 

that are difficult to check without information (Turkson et al., 2021). Many researchers 

use imputation techniques because of lack of statistical software packages for analysis 

because some censored data require sophisticated methods.  

 

This thesis used data that were left-censored due to the detection limit. The common 

methods for left-censored data due to a detection limit are imputation to zero, 

imputation to the detection limit and imputation to half the detection limit. Imputation 

to zero, where events below the detection limit are treated as if they occurred at the 

earliest possible time, often time zero (Turkson et al., 2021). Although this method is 
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straightforward, it assumes that all events below the detection limit occur 

simultaneously, potentially introducing bias and underestimating the true event times. 

Imputation to the detection limit this involves assigning all left-censored observations 

the value of the detection limit itself. This method acknowledges that events occurred 

but provides limited information about when they occurred. However, imputing events 

to the detection limit might introduce an upward bias, as it assumes all left-censored 

events happened precisely at the threshold, ignoring potential variability in their true 

occurrence times (Turkson et al., 2021). 

 

Imputation to half the detection limit. This method strikes a balance between imputing 

to zero and imputing to detection limit, thereby acknowledging the uncertainty in the 

event timing and assuming events are equally likely to occur at any point within the 

detection range. This method mitigates biases introduced by the other imputation 

methods, thereby providing a more conservative estimate of event times (Turkson et 

al., 2021).  

 

In addition to this, sometimes researchers resort to dichotomizing the data, Dichotomizing 

left-censored data involves transforming continuous survival times into binary 

outcomes, typically distinguishing between "event" and "non-event" based on a 

specified threshold (Leung et al., 1997). While this method is utilized to simplify 

analyses and accommodate left-censored information, it carries inherent limitations. 

Dichotomization results in a loss of precision and statistical power, as it disregards the 

continuous nature of survival times. The choice of the threshold becomes crucial, 

introducing subjectivity and potentially influencing conclusion (Leung et al., 1997). 

Additionally, dichotomizing may mask important temporal patterns in the data, as it 

oversimplifies the nuanced information embedded in the left-censored survival times 

(Leung et al., 1997). When dealing with dichotomization of left-censored data it has to 

be done with caution, considering its potential impact on the reliability and 

interpretability of survival analyses. 

Finally, another method sometimes used for censored data is complete case analysis. Censored 

observations are completely ignored and only the uncensored complete observations are 

included in the analysis. This type of analysis is commonly adopted because of its simplicity 

but it has several disadvantages. These include estimation bias for inference based on analysing 
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uncensored data only may be biased. Another reason is loss of efficiency since there is loss in 

sample size (Leung et al., 1997). 

 

2.4.2. Censored regression models 

The basic model that was used in this thesis is the censored regression model which 

was developed from the Tobit model which was named after Tobin (1958) who applied 

it to individual expenditure on consumer durable goods (Cameron & Pravin, 2005). 

These are statistical models designed to handle data where the dependent variable is 

subject to censoring, meaning that certain observations are only partially observed or 

limited by some threshold. These models are particularly relevant in scenarios where 

the outcome variable is only observable within a certain range or under certain 

conditions (Amemiya, 1984). As it was previously stated censoring can be either right-

censored (values above a certain threshold are unobservable) or left-censored (values 

below a certain threshold are unobservable). Censored regression models address this 

challenge and provide estimates while accounting for the censored nature of the data. 

 

The censored regression model can be defined by using a latent variable 𝑦∗ which is 

only partially observed and assumed to be normally distributed. Let 

𝑥1,𝑖, 𝑥2,𝑖, 𝑥3,𝑖, … , 𝑥𝑝,𝑖 be p observed variables for the ith study participant, i=1,..,n. The 

standard censored regression model (Tobit model) can be written as; 

𝑦𝑖
∗ = 𝛽0 + 𝛽1𝑥1,𝑖 +⋯+ 𝛽𝑝𝑥𝑝,𝑖 + 𝜀𝑖                   (9) 

Then,     𝑦𝑖
∗ = 𝑋𝑖

′𝛽 + 𝜀𝑖                              (10)  

with 𝜀𝑖  are assumed to be independent and identically distributed from 𝑁(0, 𝜎2) . It is 

also assumed that 𝑦𝑖 and 𝑥𝑖 are observed for = 1,2, … , 𝑛 , but 𝑦𝑖
∗ are observed if  

 𝑦𝑖 = 𝑦𝑖
∗ if 𝑦𝑖

∗ > 𝐷𝐿 , 

 𝑦𝑖 = 0 if 𝑦𝑖
∗ ≤ 𝐷𝐿 

To estimate the parameters the likelihood for the above equation needs to be computed 

and optimised. Let’s define X to be an n X p matrix whose ith row is 𝑥𝑖
′, we assume that 

𝑙𝑖𝑚𝑛→∞𝑛
−1𝑋′𝑋 is positive definite. Note that 𝑦𝑖

∗ > 𝐷𝐿 and 𝑦𝑖
∗ ≤ 𝐷𝐿 may be changed 

to 𝑦𝑖
∗ > 𝑦0 and   𝑦𝑖

∗ ≤ 𝑦0 without essentially changing the model, whether 𝑦0 is known 

or unknown, since 𝑦0 can be absorbed into the constant term of the regression. Then 

the likelihood function of the standard censored regression model to estimate the 

parameters is given by; 
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𝐿 =∑[Φ(
𝑥𝑖
′𝛽
𝜎⁄ )]

0

∑𝜙[(
𝑦𝑖 − 𝑥𝑖

′𝛽
𝜎⁄ )]

1

                       (11) 

 

Censored regression models, offer a powerful framework for handling censored data 

and provide estimates that account for the limitations imposed by censoring (Amemiya, 

1984). 

 

2.5. Longitudinal data analysis models 

This subsection explores different models that are commonly used in analysing 

longitudinal data. There is a class of regression approaches that is commonly 

considered; mixed effects models which are the major focus of this thesis. 

 

2.5.1 Mixed effects models  

Mixed effects models are popular for modelling longitudinal data and a basic 

characteristic of these models is the inclusion of random effects into the regression 

models to account for the influence of a grouping variable, e.g. subjects with repeated 

observations. Such grouping variables are called random factors and they are used to 

capture differences in the response variables and differences in the effects of covariates 

(referred to as fixed factors) between different levels of the grouping variable(s) on the 

response (Hedeker & Gibbons, 2006). Because of the inclusion of both random and 

fixed factors (and hence the estimation of the associated random and fixed effects / 

model coefficients), these models are called mixed effects models. Such mixed models 

also allow to estimate the degree of variation at the level of the grouping variable that 

exists in the data. For what follows in this review and discussion of mixed effects 

models, we assume a single grouping variable and that that variable is the subject ID 

variable. 

 

A key feature of mixed models, in the context of longitudinal data where subjects are 

followed up over time, is that subjects are not assumed to be measured on same number 

of time points and this means that all data can be easily included in the analysis. The 

inclusion of all data has the advantage that it increases statistical power. 
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 2.5.1.1 Linear mixed effects models.  

Linear mixed effects (LMMs) models are an extension of the general linear model to 

include random factors. LMMs make specific assumptions about the variation in 

observations attributable to variation within subjects and to variation between subjects.  

These models permit regression analysis with correlated data and also they specify 

variance components that represents both within-subject and between-subject variation 

in outcomes and trajectories. Linear mixed model parameters can be estimated using 

either Maximum Likelihood (ML) or Restricted Maximum Likelihood (REML) 

methods. Maximum Likelihood estimation aims at maximizing the likelihood function, 

which measures how well the model explains the observed data. ML estimates the 

variance components of both fixed and random effects, providing parameter estimates 

that maximize the probability of observing the given data under the assumed model. 

However, ML tends to yield biased estimates, especially for random effects, as it can 

be sensitive to sample size (Fitzmaurice et al., 2011). 

 

While Restricted Maximum Likelihood estimation addresses the bias issue by 

maximizing the likelihood function, but under the condition that the estimates are 

consistent with the fixed effects. REML removes the fixed effects and only focuses on 

the random effects' variance components. This method is particularly useful for 

estimating the variability associated with random effects without being influenced by 

fixed effects. REML estimates are often considered more reliable for understanding the 

underlying variance structure in the data. In summary, ML estimates both fixed and 

random effects, whereas REML primarily focuses on the variance components of 

random effects, providing more robust estimates of the underlying variability in the 

data (Fitzmaurice et al., 2011). 

 

Let’s assume a sample of N subjects are measured repeatedly overtime, let 𝑌𝑖𝑗 denote 

the response variable for the 𝑖𝑡ℎ subject on the 𝑗𝑡ℎ measurement (Fitzmaurice, Laird, & 

Ware, 2011). Let 𝛽𝑖0 + 𝛽𝑖1𝑋𝑖𝑗 denotes the observation line path for subject i where 𝑋𝑖𝑗 

denotes the time of measurement j on subject i. The within-subject variation is given 

by 𝑌𝑖𝑗 − (𝛽𝑖0 + 𝛽𝑖1𝑋𝑖𝑗) and the between-subject variation among intercepts is 

var(𝛽𝑖0)and among (Cameron & Pravin, 2005) slopes is var(𝛽𝑖1). Let us also assume 

that the within-subject intercepts and slopes are normally distributed. 
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Within subjects: 

𝑌𝑖𝑗 = 𝛽𝑖0 + 𝛽𝑖1𝑋𝑖𝑗 + 𝜀𝑖𝑗                    (12) 

where 𝜀𝑖𝑗~𝑁(0, 𝜎
2) 

And between subjects: (
𝛽𝑖0
𝛽𝑖1
)~𝑁[(

𝛽𝑖0
𝛽𝑖1
) ′ (

𝐷00 𝐷01
𝐷10 𝐷11

)]  

Re-writing this can be 𝑏𝑖0 = (𝛽𝑖0 − 𝛽0) and 𝑏𝑖1 = (𝛽𝑖1 − 𝛽1) 

Therefore, this model can be written as; 

𝑌𝑖𝑗 = 𝛽0 + 𝛽1𝑋𝑖𝑗 + 𝑏𝑖0 + 𝑏𝑖1𝑋𝑖𝑗 + 𝜀𝑖𝑗                       (13) 

A more general form, with more than one independent variable, can be written as; 

𝑌𝑖𝑗 = 𝛽0 + 𝛽1𝑋𝑖1 +⋯+ 𝛽𝑘𝑋𝑖𝑘 + 𝑏𝑖0 + 𝑏𝑖1𝑋𝑖1 +⋯+ 𝑏𝑖𝑝𝑋𝑖𝑝 + 𝜀𝑖𝑗                (14) 

where 𝛽0, 𝛽1, … , 𝛽𝑘 represent fixed effects and 𝑏𝑖0, 𝑏𝑖1, … 𝑏𝑖𝑝 represent random effects. 

Therefore, 𝑌𝑖𝑗 = 𝑋𝑖𝑗
′ 𝛽 + 𝑍𝑖𝑗

′ 𝑏 + 𝜀𝑖𝑗             (15) 

Where 𝑋𝑖𝑗
′ = 𝑋𝑖𝑗1, 𝑋𝑖𝑗2, 𝑋𝑖𝑗3, …𝑋𝑖𝑗𝑘 and 𝑍𝑖𝑗

′ = 𝑋𝑖𝑗1, 𝑋𝑖𝑗2, 𝑋𝑖𝑗3, …𝑋𝑖𝑗𝑝 and it is assumed 

that the covariates 𝑍𝑖𝑗 are a subset of the variables in 𝑋𝑖𝑗 thus p<k . 

  

2.5.1.2 Longitudinal censored models 

Literature shows that different types of longitudinal models have been used to deal with 

censored data, but the more common model was the use of linear mixed models by 

imputing the data. The data that was used in this thesis was longitudinal and censored 

to the left, hence the sophisticated linear model employed. 

Recall from the previous section on censored or tobit model, this was originated from 

linear regression analysis. Let 𝑦∗ be the latent variable that is not censored and assume 

linear regression (Twisk & Rijmen, 2009). 

𝑦𝑖
∗ = 𝑥𝑖

′𝛽 + 𝜀𝑖             (16) 

Where 𝜀𝑖~𝑁(0, 𝜎
2) 

Addition to that lets assume that 𝑦∗ can be observed at a range of (𝑙, 𝑝) only that the 

values of 𝑦∗ are smaller than l or larger than p. Hence the observed dependent variable 

y is obtained from 𝑦∗.  

𝑦𝑖 = 𝑙 𝑓𝑜𝑟 𝑦𝑖
∗ ≤ 𝑙          (17) 

𝑦𝑖 = 𝑦𝑖
∗ 𝑓𝑜𝑟 𝑙 < 𝑦𝑖

∗ < 𝑝           (18) 

𝑦𝑖 = 𝑝 𝑓𝑜𝑟 𝑦𝑖
∗ ≥ 𝑝                (19) 
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Furthermore, for longitudinal censored or tobit model, since 𝐸(𝑦) is not eaqual to 𝐸(𝑦∗) 

because of censoring. For distribution of y is not the same as the distribution of 𝑦∗ 

(Twisk & Rijmen, 2009). 

Therefore, for longitudinal censored model can be defined in a similar way by let 𝑦∗ be 

a linear mixed model thus;  

𝑌𝑖𝑗 = 𝛽0 + 𝛽1𝑋𝑖1 + 𝑏𝑖0 + 𝜀𝑖𝑗                      (20) 

Which can also be written as;  

𝑌𝑖𝑗 = 𝑋𝑖𝑗
′ 𝛽 + 𝑍𝑖𝑗

′ 𝑏 + 𝜀𝑖𝑗                           (21) 

So, to account for censoring in the data then a longitudinal censored mixed model can 

be written as; 

𝑌𝑖𝑗
∗ |𝑏𝑖 = 𝑋𝑖𝑗

′ 𝛽 + 𝑍𝑖𝑗
′ 𝑏 + 𝜀𝑖𝑗                     (22) 

Where 𝜀𝑖𝑗~𝑁(0, 𝜎
2) and 𝑏𝑖~𝑁(0, 𝐷) 

Where i denotes subject i and 𝑋𝑖𝑗 denotes the time of measurement j on subject i. 

It is challenging to estimate the longitudinal model's parameters because the likelihood 

involves integrals over the random effects 𝑏𝑖 that are not analytically solvable (Twisk 

& Rijmen, 2009). When the dimensionality of is too low the integral can be 

approximated using the Gaussian quadrature. The likelihood of the mixed censored 

model to estimate parameters can be defined as; 

𝑌𝑖𝑗
∗ |𝑏𝑖 = 𝑋𝑖𝑗

′ 𝛽 + 𝑍𝑖𝑗
′ 𝑏 + 𝜀𝑖𝑗                              (23) 

Where 𝜀𝑖𝑗~𝑁(0, 𝜎
2) and 𝑏𝑖~𝑁(0, 𝐷) 

Where i refers to case i and j to the jth measurement conditional on the case specific 

parameters 𝑏𝑖, a linear model is assumed with  

𝐸(𝑌𝑖𝑗
∗ |𝑏𝑖) = 𝑋𝑖𝑗

′ 𝛽 + 𝑍𝑖𝑗
′ 𝑏 + 𝜀𝑖𝑗                                     (24) 

Where y is obtained from 𝑦∗ as; 

𝑦𝑖𝑗 = 𝑙 𝑓𝑜𝑟 𝑦𝑖𝑗
∗ ≤ 𝑙                        (25) 

𝑦𝑖𝑗 = 𝑦𝑖𝑗
∗  𝑓𝑜𝑟 𝑙 < 𝑦𝑖𝑗

∗ < 𝑝                       (26)  

𝑦𝑖𝑗 = 𝑝 𝑓𝑜𝑟 𝑦𝑖𝑗
∗ ≥ 𝑝                            (27) 

Therefore, the density function of y is  

𝑓(𝑦𝑖𝑗 = 𝑙) = 𝐹(𝑦𝑖𝑗
∗ = 𝑙)                     (28) 

𝑓(𝑦𝑖𝑗) = 𝑓(𝑦𝑖𝑗
∗  )𝑓𝑜𝑟 𝑙 < 𝑦𝑖𝑗

∗ < 𝑝        (29) 

𝑓(𝑦𝑖𝑗 = 𝑝) = 1 − 𝐹(𝑦𝑖𝑗
∗ = 𝑝)                  (30) 
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Hence the contribution to the likelihood of case i is obtained as a summation of the j 

measurement for case i and integrating this summation over the case specific 

parameters (Twisk & Rijmen, 2009). Thus  

𝐿𝑖 = ∫ ∑𝑓(𝑦𝑖𝑗)𝑁(𝑏𝑖; 0, 𝐷)𝑑𝑏𝑖
𝑗𝑏𝑖

                (31) 

Therefore, the likelihood of the mixed censored model can be written as 

𝐿 =∑𝐿𝑖
𝑖

                             (32) 

 

2.5.2. Generating Estimates Equations (GEE) 

GEEs are an estimation approach for generalized linear models (GLM) that accounts 

for correlated data and clustered data. It provides a flexible framework for modeling 

the relationship between variables while accounting for correlation within clusters. 

Most statistical methods often assume independence among observations, which may 

not hold in the case of repeated measurements or clustered data. GEE addresses this 

limitation by incorporating correlation structures(Hedeker & Gibbons, 2006).  

 

To estimate GEE let 𝑌𝑖𝑗 represent the response for the 𝑖𝑡ℎ individual in the 𝑗𝑡ℎcluster at 

time t. The GEE model is typically expressed through a mean model 𝐸(𝑌𝑖𝑗) = 𝜇𝑖𝑗 

where 𝜇𝑖𝑗 is a function of covariates. 

 

The working correlation matrix V characterizes the within- cluster correlation. The 

GEE estimating equations take the form; 

𝑈(𝛽) =∑ 𝑉𝑗
−1. 𝑅𝑗(𝛽) = 0

𝑚

𝑗=1
                    (33) 

Where 𝛽 is the vector of parameters, 𝑈(𝛽) is the score function, 𝑉𝑗 is the working 

correlation matrix for cluster j,  𝑅𝑗(𝛽) is the contribution to the score from the cluster j 

(Hedeker & Gibbons, 2006). 

 

In longitudinal data, GEE is specifically designed for data collected over multiple time 

points or from clustered units, such as individuals within families or patients within 

hospitals. While in correlation structures GEE allows for specification of various 
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correlation structures e.g. exchangeable, autoregressive and unstructured to capture the 

dependence among observations within clusters(Hedeker & Gibbons, 2006). 

 

In general GEE is a powerful tool for analyzing correlated and longitudinal data. 

 

2.6 Review of Previous Research 

The analysis of antibody titre data is crucial in understanding immune responses and 

vaccine efficacy. Longitudinal studies often encounter censored data, where values fall 

below detection limits, leading to challenges in accurate estimation. Researchers have 

addressed this issue by utilizing imputation techniques and linear mixed models to 

handle censored data effectively. Twisk & Rijmen (2009) emphasized the importance 

of considering censoring in data analysis for better interpretation. 

 

A summary review of papers on antibody titre data reveals various approaches to 

handling censored data. Bonate et al. (2009) and Zhao (2017) used imputation 

techniques for endpoint titer and concentration data, respectively, while Persichetti et 

al. (2017) and Devanarayan (2017) opted for deletion of censored data. Van Stappen 

(2015) and Moraschini (2015) employed deletion and imputation methods for optical 

density and concentration data. These studies highlight the diversity in methods used to 

address censored data in antibody titre analysis. 

 

The thesis adopted a censored mixed model to assess bias and underestimated variance 

resulting from inappropriate imputation techniques. The main objective was to compare 

the impact of sub-optimal analysis methods with principled longitudinal data models. 

By focusing on accurate estimation and addressing limitations in existing methods, the 

study aimed to enhance the reliability of antibody titre measurements. 

 

Recent advancements in antibody titre estimation methods have focused on addressing 

measurement challenges and adjusting for censored data. New approaches, like the 

Adjustment for Bi-censoring (ABC) method, have been developed to handle 

measurements below the limit of detection effectively, ensuring robust estimations of 

antibody titres. Simulation studies have played a crucial role in developing and 

validating new methods, ensuring reliable and unbiased measurements. 
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2.6.1 Summary review of papers on antibody titre data. 

Table 1 below summarizes review of a few different papers on antibody titre data, how 

the data was analysed, the antibody data type used and whether the data was 

longitudinal or not. And the methods used to deal with censored data. 
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Table 1: Summary review on Antibody titer data 

Name of the Paper Antibody data type Longitudinal Method to deal with the Censored Data 

Bonate et al (2009) Endpoint titer Yes Imputed to half detection limit 

Persichetti et al (2017) Endpoint titer No Deletion 

Zhao (2017) Concentration Yes Imputation 

Van Stappen (2015) Optical density No Deletion 

Moraschini (2015) Concentration No Imputed to half detection limit 

Yang (2015) Optical density No Imputed to half detection limit 

Devanarayan (2017) Concentration No Deletion 
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CHAPTER 3 

 

METHODOLOGY 

The data and techniques used in the study are covered in detail in this chapter. 

 

3.1 Real-world data 

This thesis project used primary real-world serology data from the Pneumococcal 

Vaccine for Vulnerable Populations in Africa (PCVPA) study (Swarthout et al., 2022). 

The 13-valent pneumococcal vaccine (PCV13) targets 13 serotypes of the 

pneumococcal bacterium Streptococcus pneumoniae. The PCV13 vaccine was 

introduced in 2011 using a 3+0 schedule, where one dose at each of 6 weeks, 10 weeks, 

and 14 weeks of age was given to under 1-year-olds (Swarthout et al., 2020). This has 

been effective in reducing the prevalence of nasopharyngeal carriage and invasive 

pneumococcal diseases. For example, a trial study in Malawi, specifically in Karonga, 

showed that PCV13 was effective compared with 2 years before the introduction of 

PCV. Vaccine serotype (VT) carriage among young PCV-vaccinated children (1-4 

years of age) was 28.2% before vs. 16.5% after PCV introduction (Swarthout et al., 

2020). However, even though it has been shown that there is reduced vaccine serotype 

(VT) carriage in Malawi, there is persistent residual carriage of all 13 vaccine serotypes 

among children vaccinated with PCV13. One plausible reason for this is the waning of 

the PCV13 vaccine after the first year of life(Swarthout et al., 2022). 

 

An observational surveillance study targeting under five children from Blantyre using 

random sampling for pneumococcal carriage and repeated cross-sectional surveys was 

conducted from 2015–2019(Swarthout et al., 2020). For this thesis project, a subset of 

samples from PCVPA was used for serological assaying in the ongoing PAVE study, 

and 638 samples were randomly selected from the larger parent survey(Swarthout et 

al., 2022). Of these, 556 were primary samples and 82 were secondary 

samples(Swarthout et al., 2022). The data used in this project are serotype-specific 

immunoglobin G (IgG) levels of children aged 4 weeks to 60 months, which were 
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measured via ELISA. Enzyme-linked immunosorbent assay (ELISA) detects and 

measures antibodies and hormones in the blood. The assay relies on the principle of 

binding specificity between an antibody and an antigen (Crowther, 2000). When 

measuring these serotypes using ELISA, a surface is coated with a molecule of interest, 

such as an antigen or antibody. The sample containing the target is then added, allowing 

binding to occur. Thereafter, after washing away unbound material, an enzyme-linked 

secondary molecule is introduced that binds specifically to the target. Subsequent, 

addition of a substrate for the enzyme induces a colour change of intensity, which is 

proportional to the amount of the target substance. Then this colour change is measured, 

providing a quantitative assessment of the targets presence(Crowther, 2000). IgG is a 

type of antibody produced by plasma B cells in the human body and can serve as a 

proxy measurement of immunity.  

 

3.2 Descriptive Statistics. 

To summarize the results, the means, medians, interquartile ranges and confidence 

intervals for the estimated parameter for each of the three biomarkers were calculated. 

The primary interest was on i) bias (which model yields the least biased results, i.e. gets 

closest to the true value) and ii) the associated estimates of uncertainty (e.g. we would 

expect the imputation models to underestimate uncertainty associated with the 

parameter estimates). 

 

3.3 Simulated data 

As the focus of this project was an evaluation of different methods for modelling left-

censored, cross-sectional IgG data, this project also simulated enzyme-linked 

immunosorbent assay (ELISA) data where the true effects of vaccination and the trend 

with age were known. During this simulation, we first simulated study participants and 

their characteristics. Specifically, we simulated patient IDs, number of visits, exposure 

statuses to check if participants were exposed to the pathogen, ages and sex. Because 

the ELISA assays used by the serosurvey had a lower limit of detection (DL) of 0.15 

μg/mL, we used the same DL during the simulations, left-censoring any simulated IgG 

levels below the DL. To explore the performance of different modelling approaches, 

we simulated data for three hypothetical biomarkers, each representing a different 

scenario (specifically different levels of missing data, different strengths of effects of 

vaccine and trend with age). To mimic the real-world analysis process, we also 
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simulated samples of known concentration (so called standards) for standard curve 

fitting (ELISA measurements are optical density measurements and using a standard 

curve, these optical densities can be mapped back to actual antibody concentration 

levels). 

  

Furthermore, we simulated antibody concentrations using a four-parameter logistic 

regression for all the three biomarkers. By taking the inverse of the four-parameter 

logistic curve and using the concentrations we simulated the optical densities. To 

simulate the entire dataset, we followed the following steps; 

• Simulate the study participants and their characteristics 𝑛 = 100. For example, 

the number of samples to be analysed which was 𝑛𝑠 = 5, probability for a 

randomly selected participant to have been exposed to the pathogen was set at 

𝑃 = 0.4, set the detection limit which was assumed to be the same for all 

biomarkers 𝑑𝑙 = 0.15. 

• Simulate two data frames to retain information about patients and samples. 

• Simulate participants at different time points, i.e. number of visits, because the 

data being simulated was longitudinal. These time points were five different 

visits and were assumed to be 1 year apart. 

• Simulated age using gamma distribution and gender for each patient. In 

addition, exposure status (whether the patient has been exposed to pathogens) 

is simulated based on the specified probability of 𝑃 = 0.4. 

• Random effects for all three biomarkers were simulated using a normal 

distribution. 

• Set values for the percentage of missing data, effect of age, effect of vaccine, 

effect of sex. 

• Simulate theoretical average concentration measurements based on the above 

factors, i.e. gender, sex, exposure status and random effects. 

• Add random noise to simulate natural fluctuations in IgG levels that were 

normally distributed. The resulting ‘noisy’ values are referred to as the true 

concentration levels. 

• Random noise was added was in two levels of exponential distribution, because 

we simulated random variation for the actual concentration and the noise due to 

the measurement process. 
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• Set parameters for four parameter logistic curve. Using the inverse of this curve, 

we translate the true concentrations to true optical densities (OD). 

• Add noise to mimic the imperfect measurement process in real life. These values 

are taken as the simulated IgG optical density measurements. 

 

After the simulation, the data were analyzed using the following steps (replicating the 

way the real-world optical density data are processed and analyzed): 

• Using least-squares estimation, fit a four-parameter logistic regression model to 

the simulated standard samples. 

• Use the fitted curve to convert the simulated optical densities into estimated 

concentration levels for the simulated patient samples. 

 

Thereafter, we removed the standards used when calculating the measured 

concentrations using least square estimation and saved the data to fit the various 

analysis models to investigate how well the different models can estimate the 

parameters used during the data simulation. 

 

The data we simulated was longitudinal in nature because it involved repeated 

measurements on a set of subjects and was also left-censored given the detection limit 

we used. During this simulation, we generated one dataset with 100 participants and 

five samples per individual simulated at equal time points. 

 

Given that the data were simulated, we set the values for each of the model parameters. 

From these, we can derive the true values of some parameters estimated by the models, 

specifically the model intercept. To derive the true values for the intercepts for the three 

sets of simulated data, we took the expectation of the antibody concentration random 

variable used during the simulations. Note that the variables can be considered to be 

random during the simulation process (since we drew random samples from specific 

parametric distributions, whereas in the models, the predictors are assumed to be fixed 

and the response variable random). Below are the calculations; 

From equation (*) we take an expectation of 𝐸(𝑌𝑖𝑗) =

𝐸 (
𝛽1𝑆𝑖𝑗+𝛽2𝐴𝑖𝑗+𝛽3𝐸𝑖𝑗+𝑢𝑖+𝜀𝑖𝑗+𝑉𝑖𝑗

𝐾
)     (34)     
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Where S, A, and E are the factor variables Sex, Age, and Exposure.   

I = index for individuals 

 j = index of observations within individuals 

 𝛽1…𝛽3 = parameters of the variables  

𝑈𝑖 = Random effect  

𝜀𝑖𝑗 , 𝑉𝑖𝑗 = Exponential distribution cases 

K = Scaling parameter 

In the above expectation,  to derive the true value of the intercept, we only need to 

consider the terms that do not involve the independent variables Aij, Sij ,and Eij. 

Therefore, we need to consider only: 

𝐸 (
𝑈𝑖
𝐾
+
𝜀𝑖𝑗

𝐾
+
𝑉𝑖𝑗

𝐾
)               (35) 

 

We note that E(
𝑈𝑖

𝐾
) = 0,  since 𝑈𝑖is normally distributed where 𝑈𝑖~N (0,𝜎2). There we 

are left with 

 𝐸 (
𝜀𝑖𝑗

𝐾
+
𝑉𝑖𝑗

𝐾
) =

1
𝜆1
𝐾
+  
𝑉𝑖𝑗

𝐾
=

1
𝜆2
𝐾
                      (36) 

Since 𝜀𝑖𝑗  , 𝑉𝑖𝑗are exponential random variables, they are both distributed exponentially 

with means 
1

𝜆1
,  respectively 

1

𝜆2
and variances

1

𝜆1
2 and 

1

𝜆2
2 

Hence, from the simulation for first biomarker, lambda 1 = 0.5, and lambda 2 = 0.75, 

and K = 1. For second biomarker, rate 1 = 0.3, rate 2= 1, and K= 2, the last biomarker, 

which was the third one, rate 1= 0.75, rate2 = 0.4, and K = 2. These three biomarkers 

also differ in the proportion of missing data and all these values were chosen to make 

the biomarkers differ. 

 

Therefore, substituting in the formulae yields; 

Measured concentration of simulated biomarker1;  

𝑀𝐶1 =
1
0.5⁄

1
+
1
0.75⁄

1
 

= 2 + 1.33 = 3.33 

 

Measured concentration of simulated biomarker 2;    
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𝑀𝐶2 =
1
0.3⁄

2
+
1
1⁄

2
 

= 1.67 + 0.5 = 2.17 

Measured concentration of simulated biomarker3;   

𝑀𝐶3 =
1
0.75⁄

2
+
1
0.4⁄

2
 

= 0.67 + 1.25 = 1.92 

 

3.3.1 Data analysis of simulated data 

For the analysis, we used a longitudinal mixed model but accounted for the simulated 

censored data in five different ways. We considered three different simple imputations 

(imputation of censored values to zero, imputation to the detection limit and imputation 

to half the detection limit). We also conducted a complete case analysis. Finally, as a 

fifth analysis approach, we used a censored regression model. 

The linear mixed model is given below. Let Y represent the continuous outcome 

variable (IgG concentration). We included three fixed predictors; age of the patient, 

exposure status of the patient and sex of the patient. In addition, the models had a fixed 

intercept and a random effect for patient ID. During simulation, the data was log 

transformed; therefore, the longitudinal mixed model for the first scenario is given by 

𝑌𝑖𝑗 = 𝛽0 + 𝛽1𝐴𝑔𝑒 + 𝛽2𝑆𝑒𝑥 + 𝛽3𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 + 𝜇𝑖 + 𝜀𝑖𝑗           (37)       

 

Where 𝛽1…𝛽3 were fixed effects parameters age, exposure and sex fixed factors, 𝛽0 

was the fixed intercept and 𝜇𝑖 was the random effect associated with the individual i, 𝑖 

indexes individuals, j indexes observations within individuals and 𝜀𝑖𝑗 was a residual 

error term assumed to follow a 𝑁(0, 𝜎2) distribution. 

For the first four analysis methods (imputations to 0, half the detection limit, detection 

limit and the complete case analysis), the above model was fitted using standard 

maximum likelihood estimation using the lme4 package and the lmer() function in the 

R environment for statistical computing (R Core Team, 2023). 

For the censored regression model, however, the models were fitted slightly differently 

because the likelihood contributions from the censored observations were different 

from those from the observed measurements. 
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Specifically, due to left censoring, we did not observe𝑌𝑖𝑗, but rather 𝜑𝑖𝑗, where the values 

below the detection limit were censored. 𝜑𝑖𝑗 took the value of 𝑌𝑖𝑗for 𝑌𝑖𝑗 > 𝜌𝑖𝑗and took the 

value 𝜌𝑖𝑗, the known lower limit of detection for the jth response on subject i.  

𝜑𝑖𝑗 = {
𝑦, 𝑦 > 𝜌
𝜌, 𝑦 ≤ 𝜌

 

Where ρ was the lower limit of detection (ρ = 0.15 μg/mL in our data) 

Assuming a Gaussian random effect model, this allowed us to write down the log-

likelihood below, for an observed data set 

𝑙(𝛽0, 𝛽1, 𝛽2, 𝛽3, 𝜎
2)

=  ∑∑(log (𝑓(𝜑𝑖𝑗|𝛽0, 𝛽1, 𝛽2, 𝛽3, 𝜎
2))

+ log (𝑔(𝑌𝑖𝑗|𝜑𝑖𝑗, 𝜎
2)))      (38) 

Where;  𝑓(𝜑𝑖𝑗|𝛽0, 𝛽1, 𝛽2, 𝛽3, 𝜎
2) represented the density function for the censored 

observation 𝜑𝑖𝑗 

-  (𝑔(𝑌𝑖𝑗|𝜑𝑖𝑗, 𝜎
2) represented the density function for the observed measurement 

𝑌𝑖𝑗 given the censored values 𝜑𝑖𝑗.  

 These density functions can then be defined as below to explicitly express the log-

likelihood; 

𝑓(𝜑𝑖𝑗|𝛽0, 𝛽1, 𝛽2, 𝛽3, 𝜎
2) = Φ(

(𝜑𝑖𝑗−𝛽0−𝛽1𝐴𝑔𝑒−𝛽2𝑆𝑒𝑥−𝛽3𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒−𝜇𝑖)

𝜎
(𝑙(𝜑𝑖𝑗≤𝜌𝑖𝑗))

) 

and𝑔(𝑌𝑖𝑗|𝜑𝑖𝑗, 𝜎
2) = 𝜙(

(
𝑌𝑖𝑗−𝜑𝑖𝑗

𝜎
)

𝜎
)                     (39) 

Where; - Փ () represents the CDF of the standard normal distribution. 

- Φ () represents the PDF of the standard normal distribution. 

- L () represents the indicator function that equals 1 if the condition inside is true 

and 0 otherwise. 

Lastly, the log-likelihood is then expressed as; 

𝑙(𝛽0, 𝛽1, 𝛽2, 𝛽3, 𝜎
2)

=∑log(Φ(
(𝜑𝑖𝑗 − 𝛽0 − 𝛽1𝐴𝑔𝑒 − 𝛽2𝑆𝑒𝑥 − 𝛽3𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 − 𝜇𝑖)

𝜎(𝑙(𝜑𝑖𝑗≤𝜌𝑖𝑗))
))

+∑𝑙𝑜𝑔 

(

 
 
𝜙(

(
𝑌𝑖𝑗 − 𝜑𝑖𝑗
𝜎 )

𝜎
)

)

 
 
                         (40) 
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Where Φ(. ) and ϕ(. ) are the probability and cumulative density function, respectively, 

of the standard normal distribution. 

 

To estimate the parameter values in this censored regression we maximised the log-

likehood function. This was done using the lmer() function, which was used to fit the 

linear mixed-effects model to the data. The lmer() function optimizes the log-likelihood 

to find the parameter estimates that best describe the observed data.   

 

3.3.2. Data analysis for PCVPA DATA 

For analysis of the real-world PCVPA data apart from the four models, which were 

imputing to detection limit, imputing to half detection limit, imputing to zero, and using 

a complete case, we used censored regression model. Because these data had a detection 

limit of 0.15, to be specific, a lower limit detection means that observations were left 

censored. For easy interpretation these data were also log transformed, and we assumed 

a Gaussian linear model for 𝑦. Because of these data, we had a single variable, age in 

months. The natural logarithm of the measured IgG concentration with a single 

explanatory variable age, 𝐴 is given by; 

𝑌 = 𝛽1 + 𝛽0𝐴 + 𝜀 = 𝑓(𝐴, 𝛽) + 𝜀                  (41) 

Where 𝜀~𝑁(0, 𝜎2). 

However, since the data were left censored with a lower limit of detection, we did not 

observe 𝑌 but rather 𝑦𝑁, where the values below the detection limit were censored. 𝑦𝑁 took 

the value of 𝑌 for 𝑌 > 𝜌 and took the value 𝜌, the known lower limit of detection.  

𝑦𝑁 = {
𝑦, 𝑦 > 𝜌
𝜌, 𝑦 ≤ 𝜌

 

Where ρ was the lower limit of detection (ρ = 0.15 μg/mL in our data).For we assumed 

Gaussian model, the observed data set {𝐴𝐼 , 𝑦𝑁,𝑖}𝑖=1
𝑛

 log-likelihood can be written as; 

 

𝑙(𝛽, 𝜎2) =∑ 𝑙𝑜𝑔(𝜙 (
𝑦𝑁,𝑖 − 𝑓(𝐴, 𝛽)

𝜎
))

𝑦𝑁,𝑖>𝜌

+∑ 𝑙𝑜𝑔(Φ(
𝑓(𝐴, 𝛽) − 𝜌

𝜎
))

𝑦𝑁,𝑖≤𝜌
        (42) 

Where 𝜙(. ) and Φ(. ) are the probability and cumulative density functions of the 

standard normal distribution. 
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This thesis is a comparative study, and in simulated data, we incorporated the 

longitudinal aspect because we were trying to investigate whether the effects of age, 

gender and exposure status become more pronounced or worsen when working with 

longitudinal data. In addition, longitudinal studies introduce complexities, i.e. 

correlated measurements within subjects and potential time-dependent trend. 

 

Specifically, this evaluation involves compares the performance of imputation 

methods, considering bias and variance metrics in both cross-sectional and longitudinal 

analyses. 

 

3.4 Variables in the Study 

The outcome of interest was the IgG concentration at different ages from 0 to 60 

months. Age (in months) was used as the predictor variable for IgG concentrations of 

the different strains. In this dataset, we measured serotype-specific IgGs against the 13 

vaccine serotypes namely; 1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F and 23F and 

two non-vaccine serotypes 12F and 33F, as well as IgGs against three pneumococcal 

proteins PsaA, NanA, and Ply. The population level was estimated, serotype-specific 

immunogenicity profiles were obtained using linear regression and censored regression 

models.  

 

The simulation study used the same outcome variable (level of serotype-specific 

antibodies as measured by IgG concentration) for all three biomarkers but used three 

predictor variables: age, sex and exposure status. 

 

Therefore, all outcome variables in both the PCVPA and simulation studies were 

continuous. The explanatory variables were chosen on the basis of the literature on 

bioassays and available data from the PCVPA study. 
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CHAPTER 4 

 

RESULTS AND APPLICATION TO THE DATA 

 

The data used are explained in detail in this chapter. Furthermore, the chapter provides 

technical details on the analysis methods that were used in the study. 

 

4.1. Implementation 

All analyses and simulations were implemented in R version 4.3.2 (R Core Team, 2023) 

with the use of packages censReg (Henningsen, 2022) for the censored regression 

likelihood, ggplot2 (Wickham, 2016) for the data and results visualization and boot 

(Cante & Ripley, 2022) for the bootstrapped confidence intervals. 

 

4.2.  Overview 

This thesis project largely focuses on simulated data where we simulated IgG 

concentration data subject to a lower limit of detection, and deployed different methods 

of dealing with censored data. To show the implications of using imputation in the 

analysis of data subject to a lower limit of detection, we compared three different 

method of simple imputations (impution of censored data to 0, the detection limit or 

half the detection limit) and compared the results from analyses of these imputed data 

to the results from a complete case analysis and from using a censored regression 

model. The latter is statistically more principled than the other four methods because it 

makes full use of all the data and accounts for the uncertainty associated with left-

censored observations. In the final set of analysis results, the PCVPA serosurvey data 

are used to illustrate the same five modelling approaches on real-world research data 

and validate some of the conclusions from the simulation study. 

 

4.3 Descriptive Statistics for simulated data. 

Table 2, summarizes the descriptive statistics for all the three biomarkers and 

explanatory variables. For example, in biomarker 1, the mean age for those exposed to 
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the pathogen when using the model Imputing to DL is 0.093. These results demonstrate 

how these variables differ under various modeling and imputation approaches. 

 

 

Table 2: Descriptive Statistics for Biomarker 1, 2 and 3  

Biomarker Model Variable  Mean Median  Standard 

deviation 

1 Imputed to 

DL 

 

Age 0.093 0.092 0.045 

Exposed 0.933 0.925 0.329 

Gender 2.372 

 

2.343 0.363 

 

Imputed to 

½ DL 

Age  0.102 0.102 0.046 

Exposed 1.011 1.002 0.333 

Gender 

 

2.575 2.548 

 

0.345 

 

Imputed to 

Zero 

Age 0.111 0.110 0.048 

Exposed 1.089 1.084 0.341 

Gender 2.777 

 

2.761 

 

0.341 

 

Complete 

case analysis 

Age 0.076 0.076 0.045 

Exposed 0.769 0.765 0.323 

Gender 1.892 

 

1.883 0.322 

 

Censored 

regression 

 

Age 

0.107 0.107 0.049 

Exposed 1.052 1.035 0.347 

Gender 2.668 

 

2.646 

 

0.398 

 

2 Imputed to 

DL 

 

 

Age 

0.102 0.237 0.030 

Exposed 1.011 1.219 0.219 

Gender 2.575 0.795 

 

0.190 

Imputed to 

½ DL 

 

Age 

0.263 0.263 0.031 

Exposed 1.296 1.297 0.219 

Gender  

0.902 

0.897 

 

0.200 

 

Imputing to 

Zero 

Age 0.288 0.288 0.033 

Exposed 1.371 1.372 0.223 

Gender  

1.002 

0.998 

 

0.216 
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Complete 

case analysis 

Age 0.212 0.212 0.030 

Exposed 1.136 1.135 0.220 

Gender 0.697 

 

0.690 

 

0.191 

 

Censored 

regression  

 

Age 

0.258 0.258 0.032 

Exposed 1.281 1.280 0.222 

Gender 0.884 

 

0.876 

 

0.202 

 

3 Imputed to 

DL 

 

 

Age 

0.111 0.107 0.032 

Exposed 2.420 2.365 0.444 

Gender  0.246 

 

0.239 

 

0.161 

 

Imputed to 

½ DL 

 

Age  

0.135 0.132 0.029 

Exposed 2.617 2.584 0.381 

Gender 0.308 

 

0.301 

 

0.180 

 

Imputing 

Zero 

 

Age 

0.161 0.160 0.031 

Exposed 2.617 2.804 0.330 

Gender 0.308 0.364 

 

0.210 

 

Complete 

case analysis 

 

Age 

0.177 0.772 0.029 

Exposed 2.086 2.060 0.377 

Gender 0.080 0.175 

 

0.163 

 

Censored 

regression 

 

Age 

 

0.140 

0.136 0.038 

Exposed 2.621 2.574 0.473 

Gender  

0.321 

0.308 

 

0.195 

 

 

4.4 Estimation of the effect of explanatory variables on concentration 

As discussed above, we used simulated data to investigate the differences in results 

obtained from the five different models and to quantify how well these different 

methods performed. 

 

Results for the parameters for each of the three biomarkers are shown on forest plots 

and presented in tables. These plots and tables show the true values of the model 

parameters against their estimates from the different models. 
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Knowing these values, we then compared these true intercept values with those 

estimated by the various models. 

 

Figure 2: Forest plot of estimated parameters for the first biomarker. True values are 

indicated by the dashed grey vertical lines 

 

The black dots are the point estimates of the effects of age, exposure, and sex on the 

first biomarker against the measured concentration, and the black horizontal segments 

represent the associated confidence intervals. The closer a point estimate is to the 

vertical true value line, the better (in terms of higher accuracy/lower bias) that particular 

model estimates the corresponding intercept or effect parameter for the first biomarker. 

From the graphs above, except for the intercept parameter, for which imputing to the 

detection limit results in the least bias, imputing to the half detection limit and using a 

censored model perform best, i.e., result in the least bias. From the graphs above, no 

substantial differences in the width of the confidence intervals can be seen; in other 

words, the different methods yield estimates with similar precision. 

The above graphs are also summarized in Table 3, which shows the true values for each 

parameter and the point estimates together with 95% confidence intervals for the 

different modeling approaches. 
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Table 3:  Comparison of true values, point estimates values, and uncertainty 

values of different modelling approaches  

Biomarker Variable True 

Value 

Parameter estimates from the different modelling 

approaches  

Biomarker1   Imputed 

to DL  

Imputed 

to ½ DL  

Imputed 

to zero  

Complete 

case 

analysis  

Censored 

regression 

Intercept 3.330 3.549 

(2.168-

4.765) 

3.060 

(1.428-

4.366) 

2.900 

(1.609-

4.113) 

4.276 

(3.046-

5.432) 

3.224 

(1.920-

4.420) 

Age 0.100 0.093 

(0.010-

0.183) 

0.102 

(0.015-

0.193) 

0.111 

(0.019-

0.204) 

0.076 (-

0.011-

0.165) 

0.107 

(0.015-

0.208) 

Exposed 1.000 0.933 

(0.313-

1.597) 

1.011 

(0.379-

1.668) 

1.089 

(0.444-

1.752) 

0.769 

(0.170-

1.421) 

1.052 

(0.405-

1.748) 

Sex 

Male 

 

2.500 

 

2.372 

(1.735-

3.120) 

 

2.574 

(1.955-

3.252) 

 

 

2.777 

(2.138-

3.468) 

 

 

1.892 

(1.304-

2.566) 

 

2.668 

(1.976-

3.503) 

 

 

Table 3 shows the point estimates and confidence intervals to show variation for the 

intercept and the coefficient for the different predictor variables: age, exposure, and 

sex, in biomarker 1. Comparing these point estimates and confidence intervals with the 

true value, we were able to evaluate the accuracy and bias of each modelling approach 

for the first simulation approach. 

 

The results in the table above show that imputing to half detection limit and using 

censored model performs the best; as their results are closer to the point estimate. 

However, imputation to half detection limit is the closest to the true value, which means 

that the result has the least bias. The table above also shows that imputing to half 

detection limit confidence interval is narrower whilst using censored model is wider, 

which means that imputing to half detection limit demonstrates greater degree of 

precision. 
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Therefore, these results mean that given the five models, it is good to impute data to 

half the detection limit despite the fact that using censored model performed well in 

point estimation, but imputing to the half detection limit was closest, which means that 

it introduces the least bias. The wider the confidence interval, the more uncertainty or 

variability is accounted for. Therefore, imputing to the half detection limit has a 

narrower confidence interval, which signifies a greater degree of precision, highlighting 

the method’s ability to provide estimates with reduced uncertainty.  

The graph below shows the effects of the explanatory variables on the second 

biomarker. 

  

 

Figure 3: Forest plot of the second simulated biomarker 

From the graphs above, except for the intercept parameter, for which using the censored 

model results in the least bias, all methods performed poorly in estimating the effects 

of sex, age, and exposure. Moreover, none of the confidence interval from either 

method cover the true value of the three parameters. This shows that all models 

introduce bias and underestimate variance regarding explaining the effects of the three 

variables. 

 

The above graphs are also summarized in Table 4, which shows the true values for each 

parameter and the point estimates together with 95% confidence intervals for the 

different modeling approaches. 

The table 4 summarizes all the results explained in the graph above. 
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Table 4: Comparison of true values, point estimates values and uncertainty 

values of different modelling approaches for biomarker 2.  

Biomarke

r 

Variabl

e 

True 

Valu

e 

Modelling approach  

Biomarker 

2 

  Imputed 

to DL  

Imputed to 

½ DL  

Imputed 

to zero  

Complete 

case 

analysis  

Censored 

regression  

Intercep

t 

2.17 2.371 

(1.543-

3.117) 

1.950 

(1.130-

2.729) 

1.528 

(0.616-

2.410) 

2.820 

(2.017-

3.585) 

2.028 

(1.159-

2.844) 

Age 0.50 0.238 

(0.183-

0.297) 

0.263 

(0.206-

0.324) 

0.288 

(0.224-

0.357) 

0.212 

(0.153-

0.270) 

0.258 

(0.200-

0.321) 

Expose

d 

2.50 1.223(0.7

83-1.659) 

1.298(0.85

5-1.735) 

1.371(0.9

42-1.810) 

1.136 

(0.705-

1.557) 

1.281 

(0.838-

1.731) 

Sex 

Male 

 

1.70 

 

0.802 

(0.446-

1.202) 

 

0.902 

(0.530-

1.320) 

 

 

1.002 

(0.589-

1.454) 

 

 

0.697 

(0.324-

1.070) 

 

 

0.884 

(0.514-

1.298) 

 

 

Table 4 shows a comparison of true values, point estimates and uncertainty estimates 

in the form of confidence intervals for second biomarker. 

 

From the above table results, it shows that the methods perform poorly with regard to 

the effects of age, exposure and sex. Except in intercept where censored model is used, 

the point estimate is closer to the true value and its confidence interval is narrower 

compared to the rest of the models. Despite the fact that all methods performed poorly 

for the effects of sex, age and exposure, the point estimate that was closer to the true 

value is imputation to zero and the confidence interval that includes the true value and 

is narrower is for the imputation to zero method. 

 



41 
 

The confidence intervals for imputation to detection limit, imputation to half detection 

limit, complete case and censored model all include the true value but have varying 

widths. Despite having different widths in terms of the confidence interval, the 

confidence interval for most of these methods was wider, thereby indicating more 

variability or uncertainty in the estimate. 

 

In addition, most of these methods performed poorly because some simulation settings 

make estimation very difficult. For instance, an increase in exposure and age values in 

measured concentration two during simulation and a proportion of missing data since 

all the biomarkers had different proportions, resulted in all methods in this scenario 

yielding substantial bias and underestimation of uncertainty.  

The graph below shows the effects of the explanatory variables on the third biomarker. 

 

 

Figure 4: Forest plot of the third biomarker 

From the graphs above, the imputing to half detection limit and imputing to detection 

limit methods prove to be closer to the true value, which means the least bias introduced 

in the results. On the other hand, graphs using censored model and imputing to zero 

have the least bias, even though all the models performed poorly in estimating the 

effects of age and exposure and not great in estimating the effect of sex. From the graphs 

above, no substantial differences in the width of the confidence intervals can be seen; 

in general, it is quite difficult to tell how different the confidence intervals are.  
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The above graphs are also summarized in Table 5, which shows the true values for each 

parameter and the point estimates together with 95% confidence intervals for the 

different modeling approaches. 

 

Table 5: Comparison of true values, point estimates values, and uncertainty 

values of different modelling approaches for biomarker 3. 

Biomark

er 

Variab

le 

True 

Valu

e 

Modelling approach  

Biomarke

r3 

  Imputed 

to DL  

Imputed 

to ½ DL  

Imputed 

to zero  

Complete 

case 

analysis 

Censored 

regression  

Interce

pt 

1.92

0 

2.196 

(0.358-

3.415) 

1.658(0.2

52-2.662) 

1.120(0.0

90-1.981) 

2.905(1.2

73-3.996) 

1.590(-

0.440-2.977) 

Age 0.25

0 

0.110(0.

057-

0.182) 

0.135(0.0

83-0.197) 

0.161(0.1

05-0.223) 

0.080(0.0

27-0.145) 

0.140(0.081-

0.226) 

Expose

d 

5.00

0 

2.410 

(1.650-

3.379) 

2.617(1.9

50-3.447) 

2.824(2.2

15-3.496) 

2.086(1.4

32-2.883) 

2.621(1.819-

3.661) 

Sex 

Male 

 

0.60

0 

 

 

0.246 

(0.061-

0.581) 

 

-0.308 

(0.053-

0.663) 

 

 

-0.370 

(0.049-

0.806) 

 

-0.177(-

(0.035-

0.521) 

 

0.321(-

0.048-0.725) 

 

The above table presents the point estimates and confidence intervals for the intercept and the 

coefficients for the different predictor variables in biomarker 3.  

 

From the table above, the results show that all methods performed poorly in explaining 

the effect of gender and exposure and not well in explaining the effect of sex. Except 

in the intercept where imputing to the detection limit, the point estimate proves to be 

closer to the true value, but imputing to the zero method its confidence interval is 

narrower compared to the rest of the models. Despite all methods performed so poorly 
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to the effect of age and exposure and not great in explain the effect of sex, imputation 

to zero and using censored regression methods have least bias in all the graph. 

 

In general, imputation to zero on the effect of exposure seems like narrower than the 

rest of the models, thereby suggesting, less variability in the system. In general, the 

imputation to zero modelling approach tends to result in narrower confidence intervals 

for most variables, whereas the censored regression modelling approach tends to result 

in wider confidence intervals. 

 

Overall, the analysis of the three biomarkers reveals that imputing to half the detection 

limit and using the censored model demonstrate superior performance, with results 

closer to the point estimate. Notably, imputation to the half detection limit stands out 

as the method closest to the true value, indicating minimal bias. In addition, its narrower 

confidence interval, compared to the wider interval of the censored model, signifies a 

greater degree of precision. 

 

However, a general observation across all methods revealed poor performance in 

explaining the effects of age, exposure and sex. An exception is found in the intercept, 

where the censored model demonstrates a closer point estimate to the true value and a 

narrower confidence interval.  

 

Furthermore, it was noted that confidence intervals, especially in biomarker 2 and 3, all 

methods encompass the true value in explaining some variables, but exhibit varying 

widths. Despite differences in width, most intervals are wider, indicating more 

variability or uncertainty in the estimates. Differences in simulation settings, such as 

varying proportions of missing data and increase in exposure and age values for these 

biomarkers, contribute to substantial bias and underestimation of uncertainty across all 

methods. 

 

 4.5 PCVPA Study Results 

The population average IgG age profiles in the PCVPA study were nonlinear. For 

comparing the methods used in this thesis, linear models were used. The work in this 

thesis was the groundwork for deciding on the methodology for the wider analysis 

project of the PCVPA IgG data where non-linear functional forms were used together 
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with censored, mixed regression models (Swarthout et al., 2022), but the extension to 

non-linear functional forms was beyond the scope of this thesis project. The assays’ 

lower limit of detection was 0.15 μg/mL, which meant that the observations below this 

limit were left censored. To account for left censoring, the censored regression model 

was deployed as a method used. 

 

4.5.1 Descriptive statistics for PCVPA data 

638 plasma samples were evaluated in this study, of which 556 were primary samples 

and 82 secondary samples that were linked to each primary sample. From the table 

below, most serotype log transformed means are different across imputation methods. 

The data were log-transformed for easy interpretation; therefore, the means calculated 

below are geometric means. For instance, serotypes 6A, 19A, 19F and 23F show 

notable difference in geometric means between imputations. 

 

In addition, larger standard deviations indicate greater variability for, serotypes 6A, 

19A, 19F and 23F, which contain higher standard deviations, thereby suggesting 

increased variability in IgG concentration for these serotypes. 

 

Furthermore, from the table below, it can be easily seen that the confidence intervals 

for the censored regression approach in most serotypes are wider as compared to the 

rest of the models 

. 
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Table 6: Descriptive Statistics for all serotypes  

Serotype Model Mean Standard 

deviation 

Confidence 

Interval 

1 Imputed to 

DL 

0.311 0.043 0.245 -0.388 

Imputed to 

Half DL 

0.268 0.041 0.205 -0.341 

Imputed to 

Zero 

0.155 0.040 0.098 -0.230 

Censored 

regression 

0.275 0.043 0.171 -0.410 

3 Imputed to 

DL 

0.326 0.014 0.303-0.351 

Imputed to 

Half DL 

0.254 0.023 0.218-0.294 

Imputed to 

Zero 

0.105 0.026 0.068-0.153 

Censored 

regression 

0.234 0.027 0.136-0.349 

4 Imputed to 

DL 

0.324 0.017 0.298-0.352 

Imputed to 

Half DL 

0.255 0.012 0.236-0.275 

Imputed to 

Zero 

0.127 0.003 0.122-0.133 

Censored 

regression 

0.245 0.012 0.180-0.350 

5 Imputed to 

DL 

0.562 0.129 0.375-0.800 

Imputed to 

Half DL 

0.537 0.130 0.349-0.779 

Imputed to 

Zero 

0.465 0.140 0.270-0.733 

Censored 

regression 

0.546 0.130 0.309-0.935 

6A Imputed to 

DL 

0.841 0.288 0.448-1.401 

Imputed to 

Half DL 

0.811 0.290 0.419-1.378 

Imputed to 

Zero 

0.728 0.296 0.340-1.320 

Censored 

regression 

0.820 0.292 0.364-1.717 

6B Imputed to 

DL 

0.620 0.153 0.400-0.903 

Imputed to 

Half DL 

0.587 0.152 0.370-0.871 

Imputed to 

Zero 

0.493 0.153 0.280-0.786 
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Censored 

regression 

0.598 0.154 0.323-1.064 

7F Imputed to 

DL 

0.469 0.162 0.249-0.784 

Imputed to 

Half DL 

0.443 0.164 0.223-0.766 

Imputed to 

Zero 

0.370 0.163 0.160-0.700 

Censored 

regression 

0.452 0.166 0.190-0.906 

9V Imputed to 

DL 

0.461 0.080 0.341-0.605 

Imputed to 

Half DL 

0.415 0.083 0.293-0.565 

Imputed to 

Zero 

0.296 0.093 0.167-0.475 

Censored 

regression 

0.423 0.085 0.251-0.699 

14 Imputed to 

DL 

1.179 0.018 1.149-1.209 

Imputed to 

Half DL 

1.144 0.012 1.123-1.164 

Imputed to 

Zero 

1.030 0.004 1.024-1.036 

Censored 

regression 

1.149 0.015 0.862-1.437 

18C Imputed to 

DL 

0.330 0.037 0.273-0.394 

Imputed to 

Half DL 

0.260 0.035 0.207-0.321 

Imputed to 

Zero 

0.125 0.025 0.088-0.171 

Censored 

regression 

0.245 0.036 0.153-0.406 

19A Imputed to 

DL 

1.626 0.749 0.674-3.162 

Imputed to 

Half DL 

1.601 0.744 0.657-3.128 

Imputed to 

Zero 

1.525 0.738 0.600-3.054 

Censored 

regression 

1.607 0.747 0.554-3.892 

19F Imputed to 

DL 

1.539 0.496 0.856-2.493 

Imputed to 

Half DL 

1.525 0.493 0.846-2.473 

Imputed to 

Zero 

1.456 0.512 0.762-2.456 
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Censored 

regression 

1.530 0.495 0.710-2.981 

23F Imputed to 

DL 

0.381 0.030 0.333-0.432 

Imputed to 

Half DL 

0.308 0.032 0.259-0.363 

Imputed to 

Zero 

0.159 0.025 0.121-0.202 

Censored 

regression 

0.291 0.034 0.190-0.450 

33F Imputed to 

DL 

0.242 0.041 0.181-0.314 

Imputed to 

Half DL 

0.172 0.042 0.109-0.253 

Imputed to 

Zero 

0.064 0.031 0.025-0.128 

Censored 

regression 

0.145 0.054 0.054-0.319 

 

4.5.2 Estimation of effect of age on IgG concentration. 

As discussed in the previous chapters, we used censored regression models to account 

for lower limits of detection and contrast this to imputations of censored values DL, 

DL/2 and imputed to zero, but because of log transformation 0 could not be used instead 

0.0001 given the logarithm was taken of the IgG values. The antibody titre data (IgG 

data) are naturally skewed, and it is more meaningful to discuss fold changes than 

absolute differences; therefore, before model fitting, the data were log transformed so 

that the fitted arithmetic mean corresponded with the log of the geometric mean in the 

original data scale. We had IgG concentrations for 14 serotypes. For all serotypes, we 

imputed the data to the detection limit, half detection limit, zero (0.0001), and censored 

regression models. 

 

We used bootstrapping and the percentile method to calculate the confidence intervals 

for the best-fit linear model for all serotypes. The results of all serotypes are presented 

in the graphs below, where the geometric mean at each age point in months was 

estimated. The results presented in the graphs below have the following colour code: 

blue represents imputing to zero, red represents imputing to the detection limit, orange 

represents imputing to the half detection limit, and black represents the censored model. 

The black dots are geometric means of concentration for all data points within each 3-

month age band, and the grey dots are IgG titre data points for each sample, while the 
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shaded area is the 95% confidence band for each model represented in the colour of the 

line of model fit. 

 

The main findings of these are summarised with only a handful of selected serotypes, 

because several serotypes were analysed. The graphs below show the results for 

serotypes: serotype 1, serotype 6A and serotype 4.  

 

 

Figure5: Different linear regression models for serotype 1. 

Because the use of these data was to compare which model performed better, we fitted 

all four models to serotype 1 data, which showed the relationship between age and IgG. 

However, the focus was on different model fits. The above linear graph shows that 

when you impute to zero, it introduces the least bias because all 20 geometric means 

lie above the fitted line. When you impute the data to the detection limit, the model fit 

was biased high, as most (11 out of 20) of the geometric means lie below the fitted line, 

and it is the model fit that is highest among all four shown approaches. From the graph 

above, it can also be seen that imputing to zero has a wider confidence band which, 

means greater variability.  
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Figure 6: Different linear regression models for serotype 6A 

The above graph of serotype 6A showed not much difference in terms of bias because 

almost all geometric means lie above and within in all methods. However, even though 

it is like that imputing to zero showed least bias for only three geometric means are 

above the fitted line. The above graph also shows that imputing to zero has a wider 

confidence band than the rest of the model, which suggests an increased variability in 

IgG concentration.  
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Figure 7: Four linear regression models on serotype 4 

When three separate models were utilized, all three graphs of various serotypes (1, 6A, 

and 4) exhibited a similar pattern. This was also the case since the detection limit 

utilized was a positive 0.15 g/mL. The above graph also shows how imputation to DL 

biases high, as it can be seen that 15 out of 20 geometric means lie below the model fit. 

Moreover, imputation to zero biases low as it can be seen that all geometric means lie 

above the model fit. From the graph it is hard to tell which model underestimate 

variance since some of the confidence bands are not clear, for instance, imputing to 

zero. 

 

In general, imputation approaches are simple but ignore the uncertainty associated with 

censored observations. In addition, imputing to zero or imputing to DL there is a risk 

of biasing low or high respectively, and imputing to half detection limit often performs 

well in terms of bias and is often very similar to the censored regression approach. In 

principle, the censored regression approach is the most statistically principled, and the 

only one correctly handling uncertainty associated with the censored observations. 

However, it is also the least simple to implement and requires more advanced statistical 

expertise. However, in practice, on the PCVPA data, the confidence intervals from the 

censored regression model look very similar in terms of width to those from imputing 

to half detection limit (DL/2); thus, so that this advantage could be limited in practice. 
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CHAPTER 5 

 

DISCUSSION, CONCLUSIONS AND RECOMMENDATIONS 

Discussion of the results of the study as well as conclusion and recommendations are 

presented in the section below. 

 

5.1. Discussion 

The confidence bands of the 95% confidence interval changed depending on the model 

used. As previously stated, in principle approach confidence intervals from the censored 

regression turn to be wider as they account for the extra uncertainty of the censored 

observations which, the imputation method ignores. However, some imputation 

techniques resulted in wider confidence intervals, for example, imputing to zero in 

some cases. This was only when the imputation methods impute to values far away 

from the non-censored observations, which resulted in wider confidence intervals. 

 

Furthermore, in this study, the point estimates increased or decreased depending on the 

model used in both data sets. The study also showed that the censored regression model 

performed well as compared to imputation to DL, imputation to half DL, imputation to 

zero, and the use of complete observational models, for it was less likely to 

underestimate variance and in many of the simulated data examples, was the one with 

least bias (though imputation to half the DL performed better in a few cases). 

 

Although in the second and third biomarkers in simulated data, all methods performed 

so poorly in explaining the effect of variables (age, sex and exposure) and also not so 

great in explaining the effect of sex in third biomarker. Imputation to zero deemed to 

be closer to the true value in most of the variables, thereby least bias was introduced. 

And also, in second biomarker it was seen that imputing to zero had a narrow 

confidence interval which meant less variability even though it was had to conclude 

about confidence intervals, since confidence interval (CI) of all methods vary in width. 
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This study also used linear models in both simulated and PCVPA data despite having 

population profiles that were non-linear for comparison purposes. However, assessing 

the impact of functional form on performance was beyond the scope of this thesis 

project. The author of this thesis contributed to the wider modelling project of the 

PCVPA data that included non-linear function forms (see (Swarthout et al., 2022) 

where the author of this thesis is a co-author). Use of the Kaplan-Meier method when 

data distribution is not known (Canales et al., 2018). The disadvantage of this method 

is that it does not perform well in multivariate analysis and is also not excellent with 

left-censored data compared with right-censored data. The advantage of this model is 

that it uses the entire dataset and is not restricted to using summary statistics for the 

dataset. Another method is the use of substitution with a limit of detection DL (Canales 

et al., 2018); this is done by halving the DL with a square root of half. The disadvantage 

of this method is that it introduces error even though it is minimal, especially when 

large portions of a data set are below the DL (Canales & etal, 2018), and it does not 

account for left censoring in the data. Another method for dealing with left-censored 

data is the use of maximum likelihood estimation (MLE). Since in censored 

observations likelihoods are derived directly rather than for imputed values. Even 

though in imputation techniques uses maximum likelihood estimation. 

 

The use of a geometric mean in this study to be specific to the PCVPA study helped in 

the interpretation. Because the antibody titre data are naturally on a logarithmic scale, 

the use of an arithmetic mean could have affected the interpretation of the results. 

 

Furthermore, the longitudinal aspect was incorporated in the simulated data; this helped 

to take correlation into account, and from the results, it has been shown that the 

longitudinal censored model performed better in all three biomarkers because it did not 

underestimate variance, and bias was not introduced as it was seen in the first biomarker 

results. The point estimates in the censored model were closer to the true value, and the 

confidence interval was wider, although in some biomarkers, it was difficult to draw 

conclusion on width. 

 

5.2. Conclusion 

The aim of this study was to assess the impact of suboptimal analysis methods on 

statistical inference, mainly by quantifying the bias and underestimation of variance 
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due to simple imputation methods. We also to assessed the interpretation challenges 

when the logarithmic scale is ignored and evaluated these issues in a longitudinal data 

setting. In this study, we looked at the use of four different imputation techniques: 

imputation to detection limit, imputation to half detection limit, imputation to zero, and 

the use of complete observations in the data as well as the use of censored models when 

there is censoring in the data. 

 

The findings suggest that the use of imputation techniques in data analysis introduces 

bias and underestimates uncertainty. This has been evident in the simulated data for all 

three biomarkers, where imputation techniques, for example, imputing to the detection 

limit, have proved to be a worse model than the rest of the models, for it underestimates 

variance and introduces bias. It has also been noted that despite other imputation 

methods performing better than the censored regression approach at times this was not 

consistently so the censored regression method performed best on average across 

simulation scenarios. Of greater concern is the underestimation of variance, which can 

lead to type I errors. 

 

The results showed that the use of arithmetic mean in data like IgG data is not a good 

indicator of central tendency in naturally logarithmic data, and that interpretation is 

straightforward in log-transformed data or when a log link is used. This study has also 

revealed that if the logarithmic scale is ignored and the use of simple imputation in 

longitudinal data settings, it may lead to similar outcomes, such as underestimating 

variance and introducing bias in the data, as has been seen in simulated data where 

longitudinal censored mixed models have proven to perform better on average across 

all three biomarkers as compared to linear mixed models. The use of log-transformed 

data in PCVPA data also made interpretation easier. 

In conclusion, the best method to use is the censored regression model, which accounts 

for censoring in the data. This comparative analysis study improved our understanding 

of the methods of data analysis and assessed the impact on parameter estimates and 

interpretation of inappropriate methods. 
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5.3. Recommendations 

It is important to emphasize the importance of thorough data examination before 

applying imputation methods, highlighting the need for analysts to carefully assess the 

dataset to ensure the appropriateness of the chosen technique. 

Moreover, when dealing with log-transformed data containing censoring and detection 

limits, it is better to use censored regression models over imputation techniques. 

Because of the statistical robustness an accuracy offered by censored regression models 

in handling the complexities of censored data, ensuring more reliable and precise results 

in the analysis of such datasets. 

 

The study also suggests that when data exhibits non-linear profile, the use of linear 

spline regression models can be ideal and more effective. Linear spline regression 

models are appropriate to be used in order to capture the non-linearity in the data, thus 

giving a best-fit representation of the underlying pattern and trend. Using such linear 

spline regression models for non-linear data profiles, researchers can increase the 

model’s power to capture certain complexities in the data. This elevates the quality and 

totality of the statistical analysis and interpretation.  
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APPENDIX 

PCVPA DATA GRAPHS 

 

Serotype3 graph 

 

Serotype 23F graph 
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Serotype 6B graph 

 

Serotype 5 graph 

 

Serotype 9V graph 
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Serotype 7F graph 

 

Serotype 14 graph 
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Serotype 18C graph 

 

Serotype 19A graph 
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Serotype 19F graph 

 

Serotype 33F graph 

R PROGRAMS USED TO ANALYSE THE DATA 

Programmer: Susanne Ntchaula Barnaba 

Program: Biostatistics Master’s Thesis – Longitudinal data 

Supervisor: DR. Marc Henrion 

PCVPA DATA ANALYSIS 

rm(list=ls()) 

 

library(censReg) 

library(VGAM) 

library(boot) 
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# helper functions 

geoMean<-function(x,na.rm=T){ 

  return(exp(sum(log(x[x > 0]), na.rm=na.rm) / length(x)))} 

 

geoMeanCensoring<-function(x,left=0,right=Inf){ 

  # will return an error message if no censoring in the data 

  require(censReg) 

  return(exp(coef(censReg(log(x)~1,left=log(left),right=log(right)))["(Intercept)"]))} 

 

 

# read data and reformat 

dat<-read.csv("C:/Users/DELL/Desktop/Susanne Barnaba 

BACKUP/Literatureforsusanne/Msc project/data/PCVPA_serology_reformatted.csv") 

#View(dat) 

#summary(dat) 

 

levels(dat$age_cat_gmc)[levels(dat$age_cat_gmc)=="0-2m"]<-"0-02m" 

levels(dat$age_cat_gmc)[levels(dat$age_cat_gmc)=="3-5m"]<-"03-05m" 

levels(dat$age_cat_gmc)[levels(dat$age_cat_gmc)=="6-8m"]<-"06-08m" 

levels(dat$age_cat_gmc)[levels(dat$age_cat_gmc)=="9-11m"]<-"09-11m" 

dat$age_cat_gmc<-factor(as.character(dat$age_cat_gmc)) 

 

 

serotypes<-

c("1","3","4","5","6A","6B","7F","9V","14","18C","19A","19F","23F","33F") 

 

for(st in serotypes){ 

  dat[,paste(sep="","res",st,"_num_ImpZero")]<-dat[,paste(sep="","res",st,"_num")] 

  

dat[is.na(dat[,paste(sep="","res",st,"_num_ImpZero")]),paste(sep="","res",st,"_num_I

Zero")]<-0.01} 

 

 

doAnalysis<-

function(dat,st,varNameOrig,varNameNum,varNameImpDL,varNameImpHalfDL,var

NameImpZero,outPrefix,DL=0.15){ 

  datGeoM<-

data.frame(ageCat=unique(dat$age_cat_gmc),geoM=NA,geoM_better=NA) 

  for(i in 1:nrow(datGeoM)){ 

    datGeoM$geoM[i]<-

geoMean(dat[dat$age_cat_gmc==datGeoM$ageCat[i],varNameImpHalfDL]) # note 

that these use the simple DL/2 imputation for calculation 

    

if(sum(dat[dat$age_cat_gmc==datGeoM$ageCat[i],varNameOrig]=="<0.150")>0){ 
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      datGeoM$geoM_better[i]<-

exp(coef(censReg(as.formula(paste(sep="","log(",varNameImpDL,")~1")),data=dat[d

at$age_cat_gmc==datGeoM$ageCat[i],],left=log(DL)))["(Intercept)"]) 

    }else{ 

      datGeoM$geoM_better[i]<-

exp(coef(lm(as.formula(paste(sep="","log(",varNameNum,")~1")),data=dat[dat$age_

cat_gmc==datGeoM$ageCat[i],]))["(Intercept)"])}  } 

  levels(datGeoM$ageCat)[levels(datGeoM$ageCat)=="0-3m"]<-">00m" 

  levels(datGeoM$ageCat)[levels(datGeoM$ageCat)==">3-6m"]<-">03m" 

  levels(datGeoM$ageCat)[levels(datGeoM$ageCat)==">6-9m"]<-">06m" 

  levels(datGeoM$ageCat)[levels(datGeoM$ageCat)==">9m"]<-">09m" 

   

  datGeoM$ageCat<-factor(as.character(datGeoM$ageCat)) 

   

  datGeoM<-datGeoM[order(as.character(datGeoM$ageCat)),] 

  datGeoM$ageCatNum<-seq(1.5,58.5,by=3) 

   

  # remove NR values 

  idx<-which(dat[,varNameOrig]=="NR" | dat[,varNameOrig]=="QNS" ) 

  if(length(idx)>0){datTmp<-dat[-idx,]}else{datTmp<-dat} 

  datTmp<-dat 

   

  # fit a linear regression model 

  linearModDL<-lm(as.formula(paste(sep="","log(",varNameImpDL,") ~ 

ageMonths")), data=datTmp) 

  linearModHalfDL<-lm(as.formula(paste(sep="","log(",varNameImpHalfDL,") ~ 

ageMonths")), data=datTmp) 

  linearModZero<-lm(as.formula(paste(sep="","log(",varNameImpZero,") ~ 

ageMonths")), data=datTmp) 

  #summary(linearMod) 

   

  #fit a Tobit regression model 

  modTobit<-vglm(as.formula(paste(sep="","log(",varNameImpDL,") ~ 

ageMonths")), 

                  tobit(Lower = log(0.15)),data=datTmp) 

  #summary(modTobit) 

   

  #Plot of linear regression with geometric means 

  datNew<-data.frame(ageMonths=seq(0.1,60,length=1000)) 

  xx<-datNew$ageMonths 

   

  cf<-coef(linearModDL,logSigma=F) 

  yyDL<-cf[1]+cf[2]*xx 

   

  predTmp<-predict(linearModDL, newdata = data.frame(ageMonths=xx), interval = 

'confidence') 
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  yyDLLow <- predTmp[,2] 

  yyDLHigh <- predTmp[,3] 

 

  cf<-coef(linearModHalfDL,logSigma=F) 

  yyHalfDL<-cf[1]+cf[2]*xx 

   

  predTmp<-predict(linearModHalfDL, newdata = data.frame(ageMonths=xx), 

interval = 'confidence') 

  yyHalfDLLow <- predTmp[,2] 

  yyHalfDLHigh <- predTmp[,3] 

   

  cf<-coef(linearModZero,logSigma=F) 

  yyZero<-cf[1]+cf[2]*xx 

   

  predTmp<-predict(linearModZero, newdata = data.frame(ageMonths=xx), interval = 

'confidence') 

  yyZeroLow <- predTmp[,2] 

  yyZeroHigh <- predTmp[,3] 

   

  cf<-modTobit@coefficients 

  yyTobit<-cf[1]+cf[3]*xx 

   

  #bootstrap 95% CI for tobit regression model 

  bxm<- function(formula, data, indices) { 

    d <- data[indices,] # allows boot to select sample  

    fit <- vglm(as.formula(paste(sep="","log(",varNameImpDL,") ~ ageMonths" )), 

                tobit(Lower = log(0.15)),data=d) 

    cf<-fit@coefficients 

    xx<-seq(0.1,60,length=200) 

    yy<-cf[1]+cf[3]*xx 

    return(yy)  }  

   

  # bootstrapping with 1000 replications  

  Results <- boot(data=datTmp, statistic=bxm, R=1000, formula= 

as.formula(paste(sep="","log(",varNameImpDL,") ~ageMonths"))) 

   

  # view results 

  Results  

  #plot(Results) 

   

  # get 95% confidence interval 

  yyLowTobit<-rep(NA,ncol(Results$t)) 

  yyHighTobit<-rep(NA,ncol(Results$t)) 

  for(i in 1:ncol(Results$t)){ 

    tmp<-boot.ci(Results, type="perc", index = i)$perc[4:5] 

    yyLowTobit[i]<-tmp[1] 
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    yyHighTobit[i]<-tmp[2]  } 

   

   

  # Create a data frame for summary statistics 

  summary_table <- data.frame( 

    Model = c("Linear (DL)", "Linear (HalfDL)", "Linear (Zero)", "Tobit"), 

    Mean = c(mean(exp(yyDL)), mean(exp(yyHalfDL)), mean(exp(yyZero)), 

mean(exp(yyTobit))), 

    SD = c(sd(exp(yyDL)), sd(exp(yyHalfDL)), sd(exp(yyZero)), sd(exp(yyTobit))), 

    Lower_CI = c(quantile(exp(yyDL), 0.025), quantile(exp(yyHalfDL), 0.025), 

quantile(exp(yyZero), 0.025), quantile(exp(yyLowTobit), 0.025)), 

    Upper_CI = c(quantile(exp(yyDL), 0.975), quantile(exp(yyHalfDL), 0.975), 

quantile(exp(yyZero), 0.975), quantile(exp(yyHighTobit), 0.975))  ) 

   

  # Print the summary table 

  cat("Summary Table for", st, "\n") 

  print(summary_table) 

   

  # Save the table to a CSV file 

  write.csv(summary_table, file = paste0(outPrefix, "_summary_table.csv"), 

row.names = FALSE) 

   

  

   

  pdf(paste(sep="",outPrefix,"_fits.pdf"),width=16,height=9) 

  # Calculate dynamic y-axis limits 

  y_axis_min <- min(datGeoM$geoM_better, na.rm = TRUE) 

  y_axis_max <- max(datGeoM$geoM_better, na.rm = TRUE) 

   

  # Calculate dynamic x-axis limits 

  x_axis_min <- min(datGeoM$ageCatNum, na.rm = TRUE) 

  x_axis_max <- max(datGeoM$ageCatNum, na.rm = TRUE) 

   

  # Plot the graph with dynamic axis limits 

  plot(datGeoM$ageCatNum, datGeoM$geoM_better, log = "y", xlab = "age 

(months)", ylab = paste(sep = "", "Serotype ", st, " IgG concentration"), pch = 20, 

xlim = c(x_axis_min, x_axis_max), ylim = c(y_axis_min, y_axis_max), cex = 2) 

   

  #plot(datGeoM$ageCatNum,datGeoM$geoM_better,log="y",xlab="age 

(months)",ylab=paste(sep="","Serotype ",st," IgG 

concentration"),pch=20,ylim=c(DL,max(dat[,varNameImpDL],na.rm=T)), cex=2) 

  

points(dat$ageMonths,dat[,varNameImpDL],col=rgb(red=0,green=0,blue=0,alpha=50

,maxColorValue=255)) 

   

  lines(xx,exp(yyDL),col="red",lwd=1.5) 
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polygon(x=c(xx,xx[length(xx):1]),y=c(exp(yyDLLow),exp(yyDLHigh)[length(xx):1]

),col=rgb(red=255,green=0,blue=0,alpha=50,maxColorValue=255),border=NA) 

 

  lines(xx,exp(yyHalfDL),col="orange",lwd=1.5) 

  

polygon(x=c(xx,xx[length(xx):1]),y=c(exp(yyHalfDLLow),exp(yyHalfDLHigh)[lengt

h(xx):1]),col=rgb(red=255,green=165,blue=0,alpha=50,maxColorValue=255),border

=NA) 

 

  lines(xx,exp(yyZero),col="blue",lwd=1.5) 

  

polygon(x=c(xx,xx[length(xx):1]),y=c(exp(yyZeroLow),exp(yyZeroHigh)[length(xx):

1]),col=rgb(red=0,green=0,blue=255,alpha=50,maxColorValue=255),border=NA) 

   

  lines(xx,exp(yyTobit),lwd=1.5,col="black") 

  xx<-seq(0.1,60,length=200) 

  

polygon(x=c(xx,xx[length(xx):1]),y=c(exp(yyLowTobit),exp(yyHighTobit)[length(xx

):1]),col=rgb(red=0,green=0,blue=0,alpha=50,maxColorValue=255),border=NA) 

   

 # par(xpd=T) 

  #lgd <- legend("topleft", legend = c("data", "geometric mean per age band"), pch = 

c(1,20), bty="n", 

col=c(rgb(red=0,green=0,blue=0,alpha=50,maxColorValue=255),"black"),pt.cex=c(1,

2),inset=c(0,-0.10)) 

  #legend(lgd$rect$left+lgd$rect$w, 5^(lgd$rect$top), legend = c("model fit", "95% 

CI (model fit)"), lwd=c(2,2), 

bty="n",col=c("red",rgb(red=255,green=190,blue=190,maxColorValue=255))) # can't 

have transparent colors in the legend when in the margin; hence approximating the 

transparent red and gray... 

  #par(xpd=F) 

   

  dev.off() 

   

  return(list=ls()) 

  

#return(list=list(modLinear=modLinear,modTobit=modTobit,bootResults=Results))} 

# running serotype 23F 

 

serotypes<-

c("1","3","4","5","6A","6B","7F","9V","14","18C","19A","19F","23F","33F") 

fits<-list() 

for(st in serotypes){ 

  print(st) 
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  fits[[st]]<-

doAnalysis(dat=dat,st=st,varNameOrig=paste(sep="","res",st),varNameNum=paste(se

p="","res",st,"_num"),varNameImpDL=paste(sep="","res",st,"_num_ImpDL"),varNa

meImpHalfDL=paste(sep="","res",st,"_num_ImpHalfDL"),varNameImpZero 

=paste(sep="","res",st,"_num_ImpZero"),outPrefix=paste(sep="","../output/serotype",

st),DL=0.15)} 

 

DATA SIMULATION 

rm(list=ls()) 

#MscProject starts here 

# libraries (put any libraries that you need to load here) 

library(gtools) 

data(ELISA) 

#print(ELISA) 

 

#Changing the whole script into function 

simData<-function(seed, np=100, ns=5, pExp=0.4, dl=0.15){ 

# set a random seed; this can be any number; it's just so you can reproduce it at a later 

stage 

#seed<-15*3+2019 

#print(seed) 

set.seed(seed) 

 

#set overall parameters (add more as needed) (since the parameters are in simdata 

function the rest have changed them to comment) 

#np<-100 # number of participants for which samples are analysed 

# ns<-5 # number of samples per participant 

# pExp<-0.4 # probability for a randomly selected participant to have been exposed to 

the pathogen (I assume the 3 antibodies are related to this pathogen) 

# dl<-0.15 # detection limit (assume same one for all markers) 

 

# set up data frames 

simDatPatients<-data.frame( 

  patientID=paste(sep="","p",1:np), 

  exposed=NA, 

  exposedDate=NA, 

  gender=NA, 

  age=NA, 

  random1=NA, 

  random2=NA, 

  random3=NA) 

#print(simDatPatients) 

 

 

tmp<-expand.grid(1:ns,1:np) 
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simDatSamples<-data.frame( 

  patientID=paste(sep="","p",tmp[,2]), 

  sampleID=paste(sep="","p",tmp[,2],"_s",tmp[,1]), 

  visit=tmp[,1], 

  exposed=NA, 

  exposedDate=NA, 

  gender=NA, 

  random1=NA, 

  random2=NA, 

  random3=NA, 

  age=NA, 

  ac1=NA, # actual average concentration for antibies 1-3 

  ac2=NA, 

  ac3=NA, 

  c1=NA, # actual concentrations for antibodies 1-3 

  c2=NA, 

  c3=NA, 

  od1=NA, # perfectly backtransformed optical densities 

  od2=NA, 

  od3=NA, 

  mod1=NA, # measured optical densities for antibodies 1-3 (od1, od2, od3 with 

noise) 

  mod2=NA, 

  mod3=NA, 

  mc1=NA, # measured concentrations for antibodies 1-3; this is calculated, not 

simulated from the optical densities; this is what researchers would do to convert OD 

into concentrations; you will need to choose some of your samples to be standards of 

known cocentration. 

  mc2=NA, 

  mc3=NA 

) 

 

rm(tmp) 

 

#print(simDatSamples) 

 

#simulate gender 

simDatPatients$gender<-

factor(sample(x=c("male","female"),size=nrow(simDatPatients),replace=T)) 

simDatSamples$gender<-

simDatPatients$gender[match(simDatSamples$patientID,simDatPatients$patientID)] 

 

 

#simulate age 

simDatPatients$age<-rgamma(nrow(simDatPatients),shape=8,rate=1) 



70 
 

simDatSamples$age<-

simDatPatients$age[match(simDatSamples$patientID,simDatPatients$patientID)]+si

mDatSamples$visit 

 

 

# simulate exposure status - have participants been exposed to the pathogen (i.e. 

should have had an immune response that led to antibodies being present) 

simDatPatients$exposed<-sample(x=0:1,size=np,replace=T,prob=c(1-pExp,pExp)) 

simDatPatients$exposedDate<-

ifelse(simDatPatients$exposed==0,0,sample(x=1:ns,size=nrow(simDatPatients),repla

ce=T)) 

simDatSamples$exposedDate<-

simDatPatients$exposedDate[match(simDatSamples$patientID,simDatPatients$patie

ntID)] 

for(i in 1:np){ 

  idxS<-which(simDatSamples$patientID==paste(sep="","p",i)) 

  idxP<-which(simDatPatients$patientID==paste(sep="","p",i)) 

  simDatSamples$exposed[idxS]<-ifelse(simDatPatients$exposed[idxP]==1 & 

simDatSamples$visit[idxS]>=simDatPatients$exposedDate[idxP],1,0)} 

 

# simulate random patient effect 

simDatPatients$random1<-rnorm(np,mean=0,sd=1) 

simDatPatients$random2<-rnorm(np,mean=0,sd=1) 

simDatPatients$random3<-rnorm(np,mean=0,sd=1) 

simDatSamples$random1<-

simDatPatients$random1[match(simDatSamples$patientID,simDatPatients$patientID

)] 

simDatSamples$random2<-

simDatPatients$random2[match(simDatSamples$patientID,simDatPatients$patientID

)] 

simDatSamples$random3<-

simDatPatients$random3[match(simDatSamples$patientID,simDatPatients$patientID

)] 

 

# simulate concentration data for exposed and unexposed 

logistic4Param<-function(x,a=1,b=1,c=1,d=5){ 

  res<-d+(a-d)/(1+(x/c)^b) 

  return(res)} 

# for c1 

 

maleOffset<-2.5 

changePerYear<-0.1 

exposureIncrease<-1 

 

simDatSamples$ac1<-

ifelse(simDatSamples$gender=="male",maleOffset,0)+simDatSamples$age*changeP
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erYear+simDatSamples$exposed*exposureIncrease+rexp(nrow(simDatSamples),rate

=0.5)+simDatSamples$random1 

simDatSamples$ac1[simDatSamples$ac1<0]<-0 

 

simDatSamples$c1<-(simDatSamples$ac1+rexp(nrow(simDatSamples),rate=0.75))/1 

simDatSamples$c1[simDatSamples$c1<0]<-0 

 

#for c2 

 

maleOffset<-1.7 

changePerYear<-0.5 

exposureIncrease<-2.5 

 

simDatSamples$ac2<-

ifelse(simDatSamples$gender=="male",maleOffset,0)+simDatSamples$age*changeP

erYear+simDatSamples$exposed*exposureIncrease+rexp(nrow(simDatSamples), 

rate=0.3)+simDatSamples$random2 

simDatSamples$ac2[simDatSamples$ac2<0]<-0 

 

simDatSamples$c2<-(simDatSamples$ac2+rexp(nrow(simDatSamples),rate=1))/2 

simDatSamples$c2[simDatSamples$c2<0]<-0 

 

#for c3 

 

maleOffset<-0.6 

changePerYear<-0.25 

exposureIncrease<-5 

 

simDatSamples$ac3<-

ifelse(simDatSamples$gender=="male",maleOffset,0)+simDatSamples$age*changeP

erYear+simDatSamples$exposed*exposureIncrease+rexp(nrow(simDatSamples),rate

=0.75)+simDatSamples$random3 

simDatSamples$ac3[simDatSamples$ac3<0]<-0 

 

simDatSamples$c3<-(simDatSamples$ac3+rexp(nrow(simDatSamples),rate=0.4))/2 

simDatSamples$c3[simDatSamples$c1<0]<-0 

 

#print(simDatSamples) 

# simulate optical densities from the concentrations 

 

inverse.logistic4Param<-function(x,a,b,c,d){ 

  res<-c*((a-d)/(x-d) - 1)^(1/b) 

  return(res)} 

 

 

# add standards of known concentration (adds rows) 
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stds<-data.frame( 

  patientID=paste(sep="","std",1:5), 

  sampleID=paste(sep="","std",1:5), 

  visit=NA, 

  exposed=NA, 

  exposedDate=NA, 

  gender=NA, 

  random1=NA, 

  random2=NA, 

  random3=NA, 

  age=NA, 

  ac1=NA, 

  c1=c(5,12.5,18,20,30), 

  ac2=NA, 

  c2=c(6,9,12,15,27), 

  ac3=NA, 

  c3=c(4,8,12,20,35), 

  od1=NA, 

  od2=NA, 

  od3=NA, 

  mod1=NA, 

  mod2=NA, 

  mod3=NA, 

  mc1=NA, 

  mc2=NA, 

  mc3=NA) 

simDatSamples<-rbind(simDatSamples,stds) 

 

# going from concentration to OD 

 

# For od1 and mod1 

# x<-seq(0,40,length=100) 

# y<-inverse.logistic4Param(x,a=2,b=1,c=0.5,d=40) # default values 

# y2<-inverse.logistic4Param(x,a=0.1,b=1,c=0.5,d=40) # changing a 

# y3<-inverse.logistic4Param(x,a=1,b=2,c=0.5,d=40) # changing b 

# y4<-inverse.logistic4Param(x,a=1,b=1,c=2,d=40) # changing c 

# yFinal<-inverse.logistic4Param(x,a=0.2,b=1.5,c=1,d=40) # changing d 

# plot(x,y,type="l",ylim=c(0,5)) # specify ylim=c(0,20) if you want to restrict the 

range shown on the y axis to [0,20] 

# abline(h=dl,lty=2) 

# lines(x,y2,col="red") 

# lines(x,y3,col="blue") 

# lines(x,y4,col="green") 

# lines(x,yFinal,col="orange",lwd=2) 
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simDatSamples$od1<-inverse.logistic4Param(simDatSamples$c1, 

a=0.2,b=1.5,c=1,d=40) 

 

simDatSamples$mod1<-simDatSamples$od1+rnorm(nrow(simDatSamples),sd=0.01) 

simDatSamples$mod1[simDatSamples$mod1<0]<-0 

 

#sum(is.na(simDatSamples$od1)) 

 

 

#For od2 and mod2   

 

# For od2 and mod2 

# x<-seq(0,35,length=100) 

# y<-inverse.logistic4Param(x,a=2,b=1,c=0.5,d=35) # default values 

# y2<-inverse.logistic4Param(x,a=0.1,b=1,c=0.5,d=35) # changing a 

# y3<-inverse.logistic4Param(x,a=1,b=2,c=0.5,d=35) # changing b 

# y4<-inverse.logistic4Param(x,a=1,b=1,c=2,d=35) # changing c 

# yFinal<-inverse.logistic4Param(x,a=0,b=1,c=1.7,d=35) # changing d 

# plot(x,y,type="l",ylim=c(0,5)) # specify ylim=c(0,20) if you want to restrict the 

range shown on the y axis to [0,20] 

# abline(h=dl,lty=2) 

# lines(x,y2,col="red") 

# lines(x,y3,col="blue") 

# lines(x,y4,col="green") 

# lines(x,yFinal,col="orange",lwd=2) 

 

simDatSamples$od2<-inverse.logistic4Param(simDatSamples$c2, 

a=0,b=1,c=1.7,d=35) 

 

simDatSamples$mod2<-

simDatSamples$od2+rnorm(nrow(simDatSamples),sd=0.005) 

simDatSamples$mod2[simDatSamples$mod2<0]<-0 

 

#simDatSamples$mod2<-

rlnorm(nrow(simDatSamples),mean=simDatSamples$od2,sd=0.5) 

#For od3 and mod3 

# For od3 and mod3 

# x<-seq(0,50,length=100) 

# y<-inverse.logistic4Param(x,a=2,b=1,c=0.5,d=50) # default values 

# y2<-inverse.logistic4Param(x,a=0.1,b=1,c=0.5,d=50) # changing a 

# y3<-inverse.logistic4Param(x,a=1,b=2,c=0.5,d=50) # changing b 

# y4<-inverse.logistic4Param(x,a=1,b=1,c=2,d=50) # changing c 

# yFinal<-inverse.logistic4Param(x,a=0.2,b=1.5,c=1.5,d=50) # changing d 

# plot(x,y,type="l",ylim=c(0,5)) # specify ylim=c(0,20) if you want to restrict the 

range shown on the y axis to [0,20] 

# abline(h=dl,lty=2) 
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# lines(x,y2,col="red") 

# lines(x,y3,col="blue") 

# lines(x,y4,col="green") 

# lines(x,yFinal,col="orange",lwd=2) 

 

simDatSamples$od3<-inverse.logistic4Param(simDatSamples$c3, 

a=0.2,b=1.5,c=1.25,d=50) 

 

simDatSamples$mod3<-simDatSamples$od3+rnorm(nrow(simDatSamples),sd=0.02) 

simDatSamples$mod3[simDatSamples$mod3<0]<-0 

 

#sum(is.na(simDatSamples$mod3)) 

#hist(simDatSamples$mod1,breaks=50) 

 

#simDatSamples$mod3<-

rlnorm(nrow(simDatSamples),mean=simDatSamples$od3,sd=0.5) 

 

#print(simDatSamples) 

 

# derive (or set) limits of detection and quantification; replace all ODs below the 

LOQs by "< LOQ" or some impossble values such as "-9" 

 

simDatSamples$mod1[simDatSamples$mod1<dl]<-NA 

#sum(is.na(simDatSamples$mod1))/nrow(simDatSamples) # check the proportion of 

missing values; aim for ~4-6% for one of mod1, mod2, mod3, ~10-15% for another 

and ~25-30% for another  

 

simDatSamples$mod2[simDatSamples$mod2<dl]<-NA        

#sum(is.na(simDatSamples$mod2))/nrow(simDatSamples) # check the proportion of 

missing values; aim for ~4-6% for one of mod1, mod2, mod3, ~10-15% for another 

and ~25-30% for another  

 

simDatSamples$mod3[simDatSamples$mod3<dl]<-NA        

#sum(is.na(simDatSamples$mod3))/nrow(simDatSamples) # check the proportion of 

missing values; aim for ~4-6% for one of mod1, mod2, mod3, ~10-15% for another 

and ~25-30% for another  

 

#print(simDatSamples) 

  

# going from od to measured concentration: (i) use least squares to estimate values for 

a, b, c, d, (ii) use the estimated parameters to obtain mc1, mc2, mc3 

 

idxStds<-grep(simDatSamples$patientID,pattern="std") 

 

ssFun<-function(pars,c,mod){ 

  res<-sum( (c - logistic4Param(mod,a=pars[1],b=pars[2],c=pars[3],d=pars[4]))^2 ) 
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  res} 

 

parsC1<-

optim(par=c(0,1,1,40),fn=ssFun,c=simDatSamples$c1[idxStds],mod=simDatSamples

$mod1[idxStds]) 

simDatSamples$mc1<-logistic4Param(simDatSamples$mod1, 

a=parsC1$par[1],b=parsC1$par[2],c=parsC1$par[3],d=parsC1$par[4]) 

dlMc1<-logistic4Param(dl, 

a=parsC1$par[1],b=parsC1$par[2],c=parsC1$par[3],d=parsC1$par[4]) 

 

parsC2<-

optim(par=c(0,1,1,35),fn=ssFun,c=simDatSamples$c2[idxStds],mod=simDatSamples

$mod2[idxStds]) 

simDatSamples$mc2<-logistic4Param(simDatSamples$mod2, 

a=parsC2$par[1],b=parsC2$par[2],c=parsC2$par[3],d=parsC2$par[4]) 

dlMc2<-logistic4Param(dl, 

a=parsC2$par[1],b=parsC2$par[2],c=parsC2$par[3],d=parsC2$par[4]) 

parsC3<-

optim(par=c(0,1,1,50),fn=ssFun,c=simDatSamples$c3[idxStds],mod=simDatSamples

$mod3[idxStds]) 

simDatSamples$mc3<-logistic4Param(simDatSamples$mod3, 

a=parsC3$par[1],b=parsC3$par[2],c=parsC3$par[3],d=parsC3$par[4]) 

dlMc3<-logistic4Param(dl, 

a=parsC3$par[1],b=parsC3$par[2],c=parsC3$par[3],d=parsC3$par[4]) 

 

 

# remove the standards 

simDatSamples<-simDatSamples[-idxStds,] 

 

# preview the data 

#print(simDatSamples) 

 

# save the data 

#save(list=c("simDatSamples","dlMc1","dlMc2","dlMc3"),file="/Users/HP/Desktop/

Literatureforsusanne/Msc project/data/simDat20201022.RData") 

# Calculate the proportion of missing data for mod1 

prop_missing_mod1 <- sum(is.na(simDatSamples$mod1))/nrow(simDatSamples) 

 

# Calculate the proportion of missing data for mod2 

prop_missing_mod2 <- sum(is.na(simDatSamples$mod2))/nrow(simDatSamples) 

 

# Calculate the proportion of missing data for mod3 

prop_missing_mod3 <- sum(is.na(simDatSamples$mod3))/nrow(simDatSamples) 

 

# Print the results 

cat("Proportion of missing data for mod1:", prop_missing_mod1, "\n") 
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cat("Proportion of missing data for mod2:", prop_missing_mod2, "\n") 

cat("Proportion of missing data for mod3:", prop_missing_mod3, "\n") 

 print(results) 

#return(simDatSamples) 

 

return(list(simDatSamples=simDatSamples, 

            dlMc1=dlMc1,  

            dlMc2=dlMc2,dlMc3=dlMc3))} 

 

DATA SIMULATION ANALYSIS 

rm(list=ls()) 

 

 

source("c:/Users/DELL/Desktop/Susanne Barnaba 

BACKUP/Literatureforsusanne/Msc 

project/Scripts/Sue_DataSimulation_M_MHFinal.R") 

results<-list() 

B<-1e3 

 

# helper functions 

geoMean<-function(x,na.rm=T){ 

  return(exp(sum(log(x[x > 0]), na.rm=na.rm) / length(x)))} 

 

geoMeanCensoring<-function(x,left=0,right=Inf){ 

  # will return an error message if no censoring in the data 

  require(censReg) 

  return(exp(coef(censReg(log(x)~1,left=log(left),right=log(right)))["(Intercept)"]))} 

 

   

library(lme4) 

#library(lmerTest) 

library(censReg) 

library(VGAM) 

library(boot) 

library(GGally) 

library(tidyverse) 

library(plm) 

library(Matrix) 

 

singularModels<- 

  data.frame(j=integer(0),model=character(0)) 

 

for(j in 1:B){ 

#print(j) 

simDat<-simData(np=100, ns=5, pExp=0.4, dl=0.15, seed=j) 

simDatSamples<-simDat$simDatSamples 
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dlMc1<-simDat$dlMc1 

dlMc2<-simDat$dlMc2 

dlMc3<-simDat$dlMc3 

 

 

 

  idxMc1<-which(is.na(simDatSamples$mc1)) 

  idxMc2<-which(is.na(simDatSamples$mc2)) 

  idxMc3<-which(is.na(simDatSamples$mc3)) 

   

  simDatSamples$mc1[idxMc1]<-dlMc1 

  simDatSamples$mc2[idxMc2]<-dlMc2 

  simDatSamples$mc3[idxMc3]<-dlMc3 

   

  #fit a linear longitudinal mixed model to all the three biomakers to DL 

   

  fm1_DL<-lmer(mc1~age+exposed+gender+ (1|patientID), data = simDatSamples) 

  if(isSingular(fm1_DL)){singularModels<-rbind(singularModels, 

                                              data.frame(j=j,model="fm1_DL"))} 

  

   

   #summary(fm1_DL) 

   

   

  fm2_DL<-lmer(mc2~age+exposed+gender+ (1|patientID), data = simDatSamples) 

  if(isSingular(fm2_DL)){singularModels<-rbind(singularModels, 

                                               data.frame(j=j,model="fm2_DL"))} 

   

    

   

  #summary(fm2_DL)  

   

  fm3_DL<-lmer(mc3~age+exposed+ gender + (1|patientID), data = simDatSamples) 

  if(isSingular(fm3_DL)){singularModels<-rbind(singularModels, 

                                               data.frame(j=j,model="fm3_DL"))} 

   

   

  #summary(fm3_DL) 

   

  simDatSamples$mc1[idxMc1]<-dlMc1/2 

  simDatSamples$mc2[idxMc2]<-dlMc2/2 

  simDatSamples$mc3[idxMc3]<-dlMc3/2 

   

  #fit a linear longitudinal mixed model to all the three biomakers to DL/2 
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  fm1_halfDL<-lmer(mc1~age+exposed +gender+ (1|patientID), data = 

simDatSamples) 

  if(isSingular(fm1_halfDL)){singularModels<-rbind(singularModels, 

                                               data.frame(j=j,model="fm1_halfDL"))} 

   

   

   

  #summary(fm1_halfDL) 

   

   

  fm2_halfDL<-lmer(mc2~age+exposed+gender +(1|patientID), data = 

simDatSamples) 

  if(isSingular(fm2_halfDL)){singularModels<-rbind(singularModels, 

                                               data.frame(j=j,model="fm2_halfDL"))} 

   

   

   

  #summary(fm2_halfDL) 

   

  fm3_halfDL<-lmer(mc3~age+exposed+gender+(1|patientID), data = 

simDatSamples) 

  if(isSingular(fm3_halfDL)){singularModels<-rbind(singularModels, 

                                               data.frame(j=j,model="fm3_halfDL"))} 

   

  #summary(fm3_halfDL) 

   

   

  simDatSamples$mc1[idxMc1]<-0 

  simDatSamples$mc2[idxMc2]<-0 

  simDatSamples$mc3[idxMc3]<-0 

   

  #fit a linear longitudinal mixed model to all the three biomakers to zero 

   

  fm1_zero<-lmer(mc1~age+exposed +gender+ (1|patientID), data = simDatSamples) 

  if(isSingular(fm1_zero)){singularModels<-rbind(singularModels, 

                                               data.frame(j=j,model="fm1_zero"))} 

   

  #summary(fm1_zero) 

   

   

  fm2_zero<-lmer(mc2~age+exposed+gender+(1|patientID), data = simDatSamples) 

  if(isSingular(fm2_zero)){singularModels<-rbind(singularModels, 

                                               data.frame(j=j,model="fm2_zero"))} 

   

  #summary(fm2_zero) 
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  fm3_zero<-lmer(mc3~age+exposed+gender+(1|patientID), data = simDatSamples) 

  if(isSingular(fm3_zero)){singularModels<-rbind(singularModels, 

                                               data.frame(j=j,model="fm3_zero"))} 

   

  #summary(fm3_zero) 

   

  #fit a longitudinal mixed model to all the three biomakers to NA 

   

  simDatSamples$mc1[idxMc1]<-NA 

  simDatSamples$mc2[idxMc2]<-NA 

  simDatSamples$mc3[idxMc3]<-NA 

   

   

  fm1_NA<-lmer(mc1~age+exposed +gender+ (1|patientID), data = simDatSamples) 

  if(isSingular(fm1_NA)){singularModels<-rbind(singularModels, 

                                               data.frame(j=j,model="fm1_NA"))} 

   

  #summary(fm1_NA) 

   

   

  fm2_NA<-lmer(mc2~age+exposed+gender+(1|patientID), data = simDatSamples) 

  if(isSingular(fm2_NA)){singularModels<-rbind(singularModels, 

                                               data.frame(j=j,model="fm2_NA"))} 

   

  #summary(fm2_NA) 

   

  fm3_NA<-lmer(mc3~age+exposed+gender+(1|patientID), data = simDatSamples) 

  if(isSingular(fm3_NA)){singularModels<-rbind(singularModels, 

                                               data.frame(j=j,model="fm3_NA"))} 

   

  #summary(fm3_NA) 

   #fit a censored longitudinal mixed model to all the three biomakers 

   

  simDatSamples$mc1[idxMc1]<-dlMc1 

  simDatSamples$mc2[idxMc2]<-dlMc2 

  simDatSamples$mc3[idxMc3]<-dlMc3 

   

   

   

  simDatSamples<-pdata.frame(simDatSamples, c("patientID", "visit")) 

  fm1_C<-censReg(mc1~age+exposed +gender, data = simDatSamples, method 

="BHHH", left=dlMc1) 

  #isSingular(fm1_C) 

 #summary(fm1_C) 
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  fm2_C<-censReg(mc2~age+exposed+gender, data = simDatSamples, method 

="BHHH", left=dlMc2) 

  #isSingular(fm2_C) 

  #summary(fm2_C) 

   

  fm3_C<-censReg(mc3~age+exposed+gender, data = simDatSamples, method 

="BHHH", left=dlMc3) 

  #isSingular(fm3_C) 

#summary(fm3_C) 

   

   

 

resultsTable<- 

  data.frame(intercept=numeric(15),interceptSE=numeric(15), 

             age=numeric(15),ageSE=numeric(15), 

             exposed=numeric(15), exposedSE=numeric(15), 

             gender=numeric(15), genderSE=numeric(15)) 

rownames(resultsTable)<-c(paste(sep="","DL_",1:3), 

                          paste(sep="","halfDL_",1:3), 

                          paste(sep="","Zero_",1:3), 

                          paste(sep="","NA_",1:3), 

                          paste(sep="","C_",1:3)) 

 

 

resultsTable["DL_1",]<-

as.vector(matrix(byrow=T,nrow=2,as.vector(summary(fm1_DL)$coefficients[,1:2]))) 

resultsTable["DL_2",]<-

as.vector(matrix(byrow=T,nrow=2,as.vector(summary(fm2_DL)$coefficients[,1:2]))) 

resultsTable["DL_3",]<-

as.vector(matrix(byrow=T,nrow=2,as.vector(summary(fm3_DL)$coefficients[,1:2]))) 

resultsTable["halfDL_1",]<-

as.vector(matrix(byrow=T,nrow=2,as.vector(summary(fm1_halfDL)$coefficients[,1:2

]))) 

resultsTable["halfDL_2",]<-

as.vector(matrix(byrow=T,nrow=2,as.vector(summary(fm2_halfDL)$coefficients[,1:2

]))) 

resultsTable["halfDL_3",]<-

as.vector(matrix(byrow=T,nrow=2,as.vector(summary(fm3_halfDL)$coefficients[,1:2

]))) 

resultsTable["Zero_1",]<-

as.vector(matrix(byrow=T,nrow=2,as.vector(summary(fm1_zero)$coefficients[,1:2]))

) 

resultsTable["Zero_2",]<-

as.vector(matrix(byrow=T,nrow=2,as.vector(summary(fm2_zero)$coefficients[,1:2])) 

resultsTable["Zero_3",]<-

as.vector(matrix(byrow=T,nrow=2,as.vector(summary(fm3_zero)$coefficients[,1:2])) 
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resultsTable["NA_1",]<-

as.vector(matrix(byrow=T,nrow=2,as.vector(summary(fm1_NA)$coefficients[,1:2]))) 

resultsTable["NA_2",]<-

as.vector(matrix(byrow=T,nrow=2,as.vector(summary(fm2_NA)$coefficients[,1:2]))) 

resultsTable["NA_3",]<-

as.vector(matrix(byrow=T,nrow=2,as.vector(summary(fm3_NA)$coefficients[,1:2]))) 

resultsTable["C_1",]<-

as.vector(matrix(byrow=T,nrow=2,as.vector(summary(fm1_C)$estimate[1:4,1:2]))) 

resultsTable["C_2",]<-

as.vector(matrix(byrow=T,nrow=2,as.vector(summary(fm2_C)$estimate[1:4,1:2]))) 

resultsTable["C_3",]<-

as.vector(matrix(byrow=T,nrow=2,as.vector(summary(fm3_C)$estimate[1:4,1:2]))) 

 

 

results[[j]]<-resultsTable 

 

 

}resultsMean <- matrix(NA, nrow=nrow(results[[1]]), ncol=ncol(results[[1]])) 

rownames(resultsMean)<-rownames(results[[1]]) 

colnames(resultsMean)<-colnames(results[[1]]) 

resultsMedian <- resultsMean 

resultsquantiles25<-resultsMean 

resultsquantiles75<-resultsMean 

resultsStandarddeviation<-resultsMean 

resultsquantiles2.5<-resultsMean 

resultsquantiles97.5<-resultsMean 

 

for(l in 1:nrow(results[[1]])){ 

  for(m in 1:ncol(results[[1]])){ 

    resultsMean[l, m] <- mean(unlist(lapply(results, `[`, i =l, j = m))) 

    resultsMedian[l, m] <- median(unlist(lapply(results, `[`, i =l, j = m))) 

    resultsquantiles25[l, m]<-quantile(probs=0.25,unlist(lapply(results, `[`, i =l, j = 

m))) 

    resultsquantiles75[l, m]<-quantile(probs=0.75,unlist(lapply(results, `[`, i =l, j = 

m))) 

    resultsStandarddeviation[l, m] <- sd(unlist(lapply(results, `[`, i =l, j = m))) 

    resultsquantiles2.5[l, m]<-quantile(probs=0.025,unlist(lapply(results, `[`, i =l, j = 

m))) 

    resultsquantiles97.5[l, m]<-quantile(probs=0.975,unlist(lapply(results, `[`, i =l, j = 

m)))}} 

 

# resultsTable 

# To Create a forest plot 

 

library(ggplot2) 

library(gridExtra) 



82 
 

#with intercept Mc1, Mc2, Mc3 

 

#Mc1 

modNames<-c("DL","C","Zero","NA","halfDL") 

markerName<-"1" 

parName<-"intercept" 

trueMc1Intercept<-3.33 

 

# Create a data frame with the mean, lower, and upper values of the coefficients 

coeffs <- data.frame( 

  modNames=c("Detection Limit","Half Detection Limit","Zero","Complete 

Observations","Censored"), 

  mean=c(resultsMean[paste(sep="_",modNames,markerName),parName]), 

  lower=c(resultsquantiles2.5[paste(sep="_",modNames,markerName),parName]), 

  upper=c(resultsquantiles97.5[paste(sep="_",modNames,markerName),parName]) ) 

 

 

# Use the data frame to create the table for intercept 

resultsTable <- coeffs 

 

resultsTable 

 

 

# Use the data frame to create the graph 

df <- coeffs 

Mc1Intercept<- ggplot(data=df, aes(y=modNames, x=mean, xmin=lower, 

xmax=upper))+ 

  geom_point()+ 

  geom_errorbarh(height=.1)+ 

  geom_vline(xintercept = trueMc1Intercept,lty=2,lwd=1.25, col="darkgrey") + 

  labs(title="Intercept", x="Coefficient values",y = "")+ 

  geom_vline(xintercept =0, color = "black", linetype = "dashed", alpha= .5)+ 

  theme_classic() 

 

#This section will be removed   

  #df<-data.frame( 

  #modNames=c("Detection Limit","Half Detection Limit","Zero","Complete 

Observations","Censored"), 

   

  #df$modNames2<-relevel(x=factor(df$modNames),ref = "truth"), 

  #mean=c(resultsMean[paste(sep="_",modNames,markerName),parName]), 

  #lower=c(resultsquantiles2.5[paste(sep="_",modNames,markerName),parName]), 

  #upper=c(resultsquantiles97.5[paste(sep="_",modNames,markerName),parName]) 

   

  #) 
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#png("myGraphmc1I.png",width=16,height=9,units="cm",res=300) 

  #df$modNames<-factor(df$modNames, levels = df$modNames) 

  #ggplot(data=df, aes(y=modNames, x=mean, xmin=lower,  

  #                 xmax=upper))+ 

  #geom_point()+ 

  #geom_errorbarh(height=.1)+ 

  #geom_vline(xintercept = trueMc1Intercept,lty=2,lwd=1.25, col="darkgrey") + 

  #scale_y_discrete(name ="", breaks=1:nrow(df),labels=df$Mc1)+ 

  #labs(title="Effect of Intercept", x="Coefficient values",y = "")+ 

  #geom_vline(xintercept =0, color = "black", linetype = "dashed", alpha= .5)+ 

  #theme_classic() 

#dev.off() 

 

#Mc2 

 

modNames<-c("DL","halfDL","Zero","NA","C") 

markerName<-"2" 

parName<-"intercept" 

trueMc2Intercept<-2.17 

 

# Create a data frame with the mean, lower, and upper values of the coefficients 

coeffs <- data.frame( 

  modNames=c("Detection Limit","Half Detection Limit","Zero","Complete 

Observations","Censored"), 

  mean=c(resultsMean[paste(sep="_",modNames,markerName),parName]), 

  lower=c(resultsquantiles2.5[paste(sep="_",modNames,markerName),parName]), 

  upper=c(resultsquantiles97.5[paste(sep="_",modNames,markerName),parName])) 

 

 

# Use the data frame to create the table for intercept 

resultsTable <- coeffs 

 

resultsTable 

 

 

# Use the data frame to create the graph 

df <- coeffs 

Mc2Intercept<- ggplot(data=df, aes(y=modNames, x=mean, xmin=lower, 

xmax=upper))+ 

  geom_point()+ 

  geom_errorbarh(height=.1)+ 

  geom_vline(xintercept = trueMc2Intercept,lty=2,lwd=1.25, col="darkgrey") + 

  labs(title="Intercept", x="Coefficient values",y = "")+ 

  geom_vline(xintercept =0, color = "black", linetype = "dashed", alpha= .5)+ 

  theme_classic() 
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#df<-data.frame( 

  #modNames=c("Detection Limit","Half Detection Limit","Zero","Complete 

Observations","Censored"), 

   

   

  #mean=c(resultsMean[paste(sep="_",modNames,markerName),parName]), 

  #lower=c(resultsquantiles2.5[paste(sep="_",modNames,markerName),parName]), 

  #upper=c(resultsquantiles97.5[paste(sep="_",modNames,markerName),parName]) 

   

  #) 

 

#png("myGraphmc2I.png",width=16,height=9,units="cm",res=300) 

#Mc2intercept = ggplot(data=df, aes(y=modNames, x=mean, xmin=lower,  

#                   xmax=upper))+ 

# geom_point()+ 

# geom_errorbarh(height=.1)+ 

# geom_vline(xintercept = trueMc2Intercept,lty=2,lwd=1.25, col="darkgrey") + 

 # scale_y_discrete(name ="", breaks=1:nrow(df),labels=df$Mc2)+ 

# labs(title="Effect of Intercept", x="Coefficient values",y = "") 

  #geom_vline(xintercept =0, color = "black", linetype = "dashed", alpha= .5)+ 

  #theme_classic() 

#dev.off() 

 

#Mc3 

modNames<-c("DL","halfDL","Zero","NA","C") 

markerName<-"3" 

parName<-"intercept" 

trueMc3Intercept<-1.92 

 

# Create a data frame with the mean, lower, and upper values of the coefficients 

coeffs <- data.frame( 

  modNames=c("Detection Limit","Half Detection Limit","Zero","Complete 

Observations","Censored"), 

  mean=c(resultsMean[paste(sep="_",modNames,markerName),parName]), 

  lower=c(resultsquantiles2.5[paste(sep="_",modNames,markerName),parName]), 

  upper=c(resultsquantiles97.5[paste(sep="_",modNames,markerName),parName])) 

 

 

# Use the data frame to create the table for intercept 

resultsTable <- coeffs 

 

resultsTable 

 

 

# Use the data frame to create the graph 

df <- coeffs 
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Mc3Intercept<- ggplot(data=df, aes(y=modNames, x=mean, xmin=lower, 

xmax=upper))+ 

  geom_point()+ 

  geom_errorbarh(height=.1)+ 

  geom_vline(xintercept = trueMc3Intercept,lty=2,lwd=1.25, col="darkgrey") + 

  labs(title="Intercept", x="Coefficient values",y = "")+ 

  geom_vline(xintercept =0, color = "black", linetype = "dashed", alpha= .5)+ 

  theme_classic() 

 

# Below it has to be removed except  

 

 

#df<-data.frame( 

# modNames=c("DL","Half DL","Zero","Complete Observations","Censored"), 

#  

#  

# mean=c(resultsMean[paste(sep="_",modNames,markerName),parName]), 

# lower=c(resultsquantiles2.5[paste(sep="_",modNames,markerName),parName]), 

# upper=c(resultsquantiles97.5[paste(sep="_",modNames,markerName),parName]) 

   

#) 

 

 

#png("myGraphmc3I.png",width=16,height=9,units="cm",res=300) 

#Mc3intercept = ggplot(data=df, aes(y=modNames, x=mean, xmin=lower,  

#                   xmax=upper))+ 

# geom_point()+ 

# geom_errorbarh(height=.1)+ 

# geom_vline(xintercept = trueMc3Intercept,lty=2,lwd=1.25, col="darkgrey") + 

 # scale_y_discrete(name ="", breaks=1:nrow(df),labels=df$Mc3)+ 

# labs(title="Effect of Intercept", x="Coefficient values",y = "") 

  #geom_vline(xintercept =0, color = "black", linetype = "dashed", alpha= .5)+ 

  #theme_classic() 

#dev.off() 

 

#with gender Mc1, Mc2, Mc3 

 

#Mc1 

modNames<-c("DL","halfDL","Zero","NA","C") 

markerName<-"1" 

parName<-"gender" 

trueMc1gender<-2.5 

 

# Create a data frame with the mean, lower, and upper values of the coefficients 

coeffs <- data.frame( 
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  modNames=c("Detection Limit","Half Detection Limit","Zero","Complete 

Observations","Censored"), 

  mean=c(resultsMean[paste(sep="_",modNames,markerName),parName]), 

  lower=c(resultsquantiles2.5[paste(sep="_",modNames,markerName),parName]), 

  upper=c(resultsquantiles97.5[paste(sep="_",modNames,markerName),parName])) 

 

 

# Use the data frame to create the table for intercept 

resultsTable <- coeffs 

 

resultsTable 

 

 

# Use the data frame to create the graph 

df <- coeffs 

Mc1gender<- ggplot(data=df, aes(y=modNames, x=mean, xmin=lower, 

xmax=upper))+ 

  geom_point()+ 

  geom_errorbarh(height=.1)+ 

  geom_vline(xintercept = trueMc1gender,lty=2,lwd=1.25, col="darkgrey") + 

  labs(title="Effect of Sex", x="Coefficient values",y = "")+ 

  geom_vline(xintercept =0, color = "black", linetype = "dashed", alpha= .5)+ 

  theme_classic() 

 

 

 

 

# df<-data.frame( 

#   modNames=c("DL","Half DL","Zero","Complete Observations","Censored"), 

   

        #df$modNames2<-relevel(x=factor(df$modNames),ref = "truth"), 

#   mean=c(resultsMean[paste(sep="_",modNames,markerName),parName]), 

#   lower=c(resultsquantiles2.5[paste(sep="_",modNames,markerName),parName]), 

#   upper=c(resultsquantiles97.5[paste(sep="_",modNames,markerName),parName]) 

#    

# ) 

 

 

#png("myGraphmc1G.png",width=16,height=9,units="cm",res=300) 

#Mc1gender = ggplot(data=df, aes(y=modNames, x=mean, xmin=lower,  

#                        xmax=upper))+ 

#      geom_point()+ 

#      geom_errorbarh(height=.1)+ 

# geom_vline(xintercept = trueMc1gender,lty=2,lwd=1.25, col="darkgrey") + 

       #scale_y_discrete(name ="", breaks=1:nrow(df),labels=df$Mc1)+ 

#      labs(title="Effect of Sex", x="Coefficient values",y = "") 
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       #geom_vline(xintercept =0, color = "black", linetype = "dashed", alpha= .5)+ 

       #theme_classic() 

#dev.off() 

 

#Mc2 

modNames<-c("DL","halfDL","Zero","NA","C") 

markerName<-"2" 

parName<-"gender" 

trueMc2gender<-1.7 

 

# Create a data frame with the mean, lower, and upper values of the coefficients 

coeffs <- data.frame( 

  modNames=c("Detection Limit","Half Detection Limit","Zero","Complete 

Observations","Censored"), 

  mean=c(resultsMean[paste(sep="_",modNames,markerName),parName]), 

  lower=c(resultsquantiles2.5[paste(sep="_",modNames,markerName),parName]), 

  upper=c(resultsquantiles97.5[paste(sep="_",modNames,markerName),parName])) 

 

 

# Use the data frame to create the table for intercept 

resultsTable <- coeffs 

 

resultsTable 

 

 

# Use the data frame to create the graph 

df <- coeffs 

Mc2gender<- ggplot(data=df, aes(y=modNames, x=mean, xmin=lower, 

xmax=upper))+ 

  geom_point()+ 

  geom_errorbarh(height=.1)+ 

  geom_vline(xintercept = trueMc2gender,lty=2,lwd=1.25, col="darkgrey") + 

  labs(title="Effect of Sex", x="Coefficient values",y = "")+ 

  geom_vline(xintercept =0, color = "black", linetype = "dashed", alpha= .5)+ 

  theme_classic() 

 

 

#df<-data.frame( 

#   modNames=c("DL","Half DL","Zero","Complete Observations","Censored"), 

     

     

#   mean=c(resultsMean[paste(sep="_",modNames,markerName),parName]), 

#   lower=c(resultsquantiles2.5[paste(sep="_",modNames,markerName),parName]), 

#   upper=c(resultsquantiles97.5[paste(sep="_",modNames,markerName),parName]) 

#    

# ) 
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#png("myGraphmc2G.png",width=16,height=9,units="cm",res=300) 

# Mc2gender = ggplot(data=df, aes(y=modNames, x=mean, xmin=lower,  

#                   xmax=upper))+ 

#  geom_point()+ 

# geom_errorbarh(height=.1)+ 

# geom_vline(xintercept = trueMc2gender,lty=2,lwd=1.25, col="darkgrey") + 

  # scale_y_discrete(name ="", breaks=1:nrow(df),labels=df$Mc2)+ 

# labs(title="Effect of Sex", x="Coefficient values",y = "") 

  #geom_vline(xintercept =0, color = "black", linetype = "dashed", alpha= .5)+ 

  #theme_classic() 

#dev.off() 

 

#Mc3 

modNames<-c("DL","halfDL","Zero","NA","C") 

markerName<-"3" 

parName<-"gender" 

trueMc3gender<-0.6 

 

# Create a data frame with the mean, lower, and upper values of the coefficients 

coeffs <- data.frame( 

  modNames=c("Detection Limit","Half Detection Limit","Zero","Complete 

Observations","Censored"), 

  mean=c(resultsMean[paste(sep="_",modNames,markerName),parName]), 

  lower=c(resultsquantiles2.5[paste(sep="_",modNames,markerName),parName]), 

  upper=c(resultsquantiles97.5[paste(sep="_",modNames,markerName),parName])) 

 

 

# Use the data frame to create the table for intercept 

resultsTable <- coeffs 

 

resultsTable 

 

 

# Use the data frame to create the graph 

df <- coeffs 

Mc3gender<- ggplot(data=df, aes(y=modNames, x=mean, xmin=lower, 

xmax=upper))+ 

  geom_point()+ 

  geom_errorbarh(height=.1)+ 

  geom_vline(xintercept = trueMc3gender,lty=2,lwd=1.25, col="darkgrey") + 

  labs(title="Effect of Sex", x="Coefficient values",y = "")+ 

  geom_vline(xintercept =0, color = "black", linetype = "dashed", alpha= .5)+ 

  theme_classic() 

 

 

#df<-data.frame( 
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#   modNames=c("DL","HalfDL","Zero","Complete Observation","Censored"), 

#    

#   mean=c(resultsMean[paste(sep="_",modNames,markerName),parName]), 

#   lower=c(resultsquantiles2.5[paste(sep="_",modNames,markerName),parName]), 

#   upper=c(resultsquantiles97.5[paste(sep="_",modNames,markerName),parName]) 

     

# ) 

 

#png("myGraphmc3G.png",width=16,height=9,units="cm",res=300) 

# Mc3gender = ggplot(data=df, aes(y=modNames, x=mean, xmin=lower,  

#                   xmax=upper))+ 

# geom_point()+ 

# geom_errorbarh(height=.1)+ 

# geom_vline(xintercept = trueMc3gender,lty=2,lwd=1.25, col="darkgrey") + 

  # scale_y_discrete(name ="", breaks=1:nrow(df),labels=df$Mc3)+ 

# labs(title="Effect of Sex", x="Cofficient values",y = "") 

  #geom_vline(xintercept =0, color = "black", linetype = "dashed", alpha= .5)+ 

  #theme_classic() 

#dev.off() 

 

#with age Mc1, Mc2, Mc3 

 

#Mc1 

modNames<-c("DL","halfDL","Zero","NA","C") 

markerName<-"1" 

parName<-"age" 

trueMc1age<-0.1 

 

# Create a data frame with the mean, lower, and upper values of the coefficients 

coeffs <- data.frame( 

  modNames=c("Detection Limit","Half Detection Limit","Zero","Complete 

Observations","Censored"), 

  mean=c(resultsMean[paste(sep="_",modNames,markerName),parName]), 

  lower=c(resultsquantiles2.5[paste(sep="_",modNames,markerName),parName]), 

  upper=c(resultsquantiles97.5[paste(sep="_",modNames,markerName),parName])) 

 

 

# Use the data frame to create the table for intercept 

resultsTable <- coeffs 

 

resultsTable 

 

 

# Use the data frame to create the graph 

df <- coeffs 

Mc1age<-ggplot(data=df, aes(y=modNames, x=mean, xmin=lower, xmax=upper))+ 
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  geom_point()+ 

  geom_errorbarh(height=.1)+ 

  geom_vline(xintercept = trueMc1age,lty=2,lwd=1.25, col="darkgrey") + 

  labs(title="Effect of Age", x="Coefficient values",y = "")+ 

  geom_vline(xintercept =0, color = "black", linetype = "dashed", alpha= .5)+ 

  theme_classic() 

 

 

 

#df<-data.frame( 

# modNames=c("DL","Half DL","Zero","Complete Observations","Censored"), 

   

# mean=c(resultsMean[paste(sep="_",modNames,markerName),parName]), 

# lower=c(resultsquantiles2.5[paste(sep="_",modNames,markerName),parName]), 

# upper=c(resultsquantiles97.5[paste(sep="_",modNames,markerName),parName]) 

#  

#) 

#png("myGraphmc1A.png",width=16,height=9,units="cm",res=300) 

#Mc1age = ggplot(data=df, aes(y=modNames, x=mean, xmin=lower,  

#                   xmax=upper))+ 

# geom_point()+ 

# geom_errorbarh(height=.1)+ 

# geom_vline(xintercept = trueMc1age,lty=2,lwd=1.25, col="darkgrey") + 

  #scale_y_discrete(name ="", breaks=1:nrow(df),labels=df$Mc1)+ 

# labs(title="Effect of Age", x="Coefficient values",y = "") 

  #geom_vline(xintercept =0, color = "black", linetype = "dashed", alpha= .5)+ 

  #theme_classic() 

#dev.off() 

 

#Mc2 

modNames<-c("DL","halfDL","Zero","NA","C") 

markerName<-"2" 

parName<-"age" 

trueMc2age<-0.5 

 

# Create a data frame with the mean, lower, and upper values of the coefficients 

coeffs <- data.frame( 

  modNames=c("Detection Limit","Half Detection Limit","Zero","Complete 

Observations","Censored"), 

  mean=c(resultsMean[paste(sep="_",modNames,markerName),parName]), 

  lower=c(resultsquantiles2.5[paste(sep="_",modNames,markerName),parName]), 

  upper=c(resultsquantiles97.5[paste(sep="_",modNames,markerName),parName])) 

 

 

# Use the data frame to create the table for intercept 

resultsTable <- coeffs 
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resultsTable 

 

 

# Use the data frame to create the graph 

df <- coeffs 

Mc2age <- ggplot(data=df, aes(y=modNames, x=mean, xmin=lower, xmax=upper))+ 

  geom_point()+ 

  geom_errorbarh(height=.1)+ 

  geom_vline(xintercept = trueMc2age,lty=2,lwd=1.25, col="darkgrey") + 

  labs(title="Effect of Age", x="Coefficient values",y = "")+ 

  geom_vline(xintercept =0, color = "black", linetype = "dashed", alpha= .5)+ 

  theme_classic() 

 

 

#df<-data.frame( 

  #modNames=c("DL","Half DL","Zero","Complete Observations","Censored"), 

   

   

  #mean=c(resultsMean[paste(sep="_",modNames,markerName),parName]), 

  #lower=c(resultsquantiles2.5[paste(sep="_",modNames,markerName),parName]), 

  #upper=c(resultsquantiles97.5[paste(sep="_",modNames,markerName),parName]) 

   

  #) 

 

#png("myGraphmc2A.png",width=16,height=9,units="cm",res=300) 

#Mc2age = ggplot(data=df, aes(y=modNames, x=mean, xmin=lower,  

#                   xmax=upper))+ 

# geom_point()+ 

# geom_errorbarh(height=.1)+ 

# geom_vline(xintercept = trueMc2age,lty=2,lwd=1.25, col="darkgrey") + 

 # scale_y_discrete(name ="", breaks=1:nrow(df),labels=df$Mc2)+ 

# labs(title="Effect of Age", x="Coefficient values",y = "") 

  #geom_vline(xintercept =0, color = "black", linetype = "dashed", alpha= .5)+ 

  #theme_classic() 

#dev.off() 

 

#Mc3 

modNames<-c("DL","halfDL","Zero","NA","C") 

markerName<-"3" 

parName<-"age" 

trueMc3age<-0.25 

 

# Create a data frame with the mean, lower, and upper values of the coefficients 

coeffs <- data.frame( 
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  modNames=c("Detection Limit","Half Detection Limit","Zero","Complete 

Observations","Censored"), 

  mean=c(resultsMean[paste(sep="_",modNames,markerName),parName]), 

  lower=c(resultsquantiles2.5[paste(sep="_",modNames,markerName),parName]), 

  upper=c(resultsquantiles97.5[paste(sep="_",modNames,markerName),parName])) 

 

 

# Use the data frame to create the table for intercept 

resultsTable <- coeffs 

 

resultsTable 

 

 

# Use the data frame to create the graph 

df <- coeffs 

Mc3age <- ggplot(data=df, aes(y=modNames, x=mean, xmin=lower, xmax=upper))+ 

  geom_point()+ 

  geom_errorbarh(height=.1)+ 

  geom_vline(xintercept = trueMc3age,lty=2,lwd=1.25, col="darkgrey") + 

  labs(title="Effect of Age", x="Coefficient values",y = "")+ 

  geom_vline(xintercept =0, color = "black", linetype = "dashed", alpha= .5)+ 

  theme_classic() 

 

 

 

 

#df<-data.frame( 

# modNames=c("DL","Half DL","Zero","Complete Observations","Censored"), 

   

   

# mean=c(resultsMean[paste(sep="_",modNames,markerName),parName]), 

# lower=c(resultsquantiles2.5[paste(sep="_",modNames,markerName),parName]), 

# upper=c(resultsquantiles97.5[paste(sep="_",modNames,markerName),parName]) 

   

#) 

 

#png("myGraphmc3A.png",width=16,height=9,units="cm",res=300) 

#Mc3age = ggplot(data=df, aes(y=modNames, x=mean, xmin=lower,  

# xmax=upper))+ 

  #geom_point()+ 

#geom_errorbarh(height=.1)+ 

# geom_vline(xintercept = trueMc3age,lty=2,lwd=1.25, col="darkgrey") + 

 # scale_y_discrete(name ="", breaks=1:nrow(df),labels=df$Mc3)+ 

#labs(title="Effect of Age", x="Coefficient values",y = "") 

  #geom_vline(xintercept =0, color = "black", linetype = "dashed", alpha= .5)+ 

  #theme_classic() 
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#dev.off() 

 

#with Exposed Mc1, Mc2, Mc3 

 

#Mc1 

modNames<-c("DL","halfDL","Zero","NA","C") 

markerName<-"1" 

parName<-"exposed" 

trueMc1exposed<-1 

 

# Create a data frame with the mean, lower, and upper values of the coefficients 

coeffs <- data.frame( 

  modNames=c("Detection Limit","Half Detection Limit","Zero","Complete 

Observations","Censored"), 

  mean=c(resultsMean[paste(sep="_",modNames,markerName),parName]), 

  lower=c(resultsquantiles2.5[paste(sep="_",modNames,markerName),parName]), 

  upper=c(resultsquantiles97.5[paste(sep="_",modNames,markerName),parName]) 

) 

 

 

# Use the data frame to create the table for intercept 

resultsTable <- coeffs 

 

resultsTable 

 

 

# Use the data frame to create the graph 

df <- coeffs 

Mc1exposed <- ggplot(data=df, aes(y=modNames, x=mean, xmin=lower, 

xmax=upper))+ 

  geom_point()+ 

  geom_errorbarh(height=.1)+ 

  geom_vline(xintercept = trueMc1exposed,lty=2,lwd=1.25, col="darkgrey") + 

  labs(title="Effect of Exposure", x="Coefficient values",y = "")+ 

  geom_vline(xintercept =0, color = "black", linetype = "dashed", alpha= .5)+ 

  theme_classic() 

 

 

 

#df<-data.frame( 

# modNames=c("DL","Half DL","Zero","Complete Observations","Censored"), 

   

   

# mean=c(resultsMean[paste(sep="_",modNames,markerName),parName]), 

# lower=c(resultsquantiles2.5[paste(sep="_",modNames,markerName),parName]), 

#upper=c(resultsquantiles97.5[paste(sep="_",modNames,markerName),parName]) 
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#) 

 

#png("myGraphmc1E.png",width=16,height=9,units="cm",res=300) 

#Mc1exposed = ggplot(data=df, aes(y=modNames, x=mean, xmin=lower,  

# xmax=upper))+ 

#geom_point()+ 

#geom_errorbarh(height=.1)+ 

#geom_vline(xintercept = trueMc1exposed,lty=2,lwd=1.25, col="darkgrey") + 

  #scale_y_discrete(name ="", breaks=1:nrow(df),labels=df$Mc1)+ 

# labs(title="Effect of Exposure", x="Coefficient values",y = "") 

  #geom_vline(xintercept =0, color = "black", linetype = "dashed", alpha= .5)+ 

  #theme_classic() 

#dev.off() 

 

 

#Mc2 

modNames<-c("DL","halfDL","Zero","NA","C") 

markerName<-"2" 

parName<-"exposed" 

trueMc2exposed<-2.5 

 

# Create a data frame with the mean, lower, and upper values of the coefficients 

coeffs <- data.frame( 

  modNames=c("Detection Limit","Half Detection Limit","Zero","Complete 

Observations","Censored"), 

  mean=c(resultsMean[paste(sep="_",modNames,markerName),parName]), 

  lower=c(resultsquantiles2.5[paste(sep="_",modNames,markerName),parName]), 

  upper=c(resultsquantiles97.5[paste(sep="_",modNames,markerName),parName])) 

 

 

# Use the data frame to create the table for intercept 

resultsTable <- coeffs 

 

resultsTable 

 

 

# Use the data frame to create the graph 

df <- coeffs 

Mc2exposed <- ggplot(data=df, aes(y=modNames, x=mean, xmin=lower, 

xmax=upper))+ 

  geom_point()+ 

  geom_errorbarh(height=.1)+ 

  geom_vline(xintercept = trueMc2exposed,lty=2,lwd=1.25, col="darkgrey") + 

  labs(title="Effect of Exposure", x="Coefficient values",y = "")+ 

  geom_vline(xintercept =0, color = "black", linetype = "dashed", alpha= .5)+ 
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  theme_classic() 

 

 

#df<-data.frame( 

# modNames=c("DL","Half DL","Zero","Complete Observations","Censored"), 

   

   

# mean=c(resultsMean[paste(sep="_",modNames,markerName),parName]), 

# lower=c(resultsquantiles2.5[paste(sep="_",modNames,markerName),parName]), 

# upper=c(resultsquantiles97.5[paste(sep="_",modNames,markerName),parName]) 

   

#) 

 

#png("myGraphMC2E.png",width=16,height=9,units="cm",res=300) 

#Mc2exposed = ggplot(data=df, aes(y=modNames, x=mean, xmin=lower,  

#                   xmax=upper))+ 

# geom_point()+ 

# geom_errorbarh(height=.1)+ 

# geom_vline(xintercept = trueMc2exposed,lty=2,lwd=1.25, col="darkgrey") + 

  #scale_y_discrete(name ="", breaks=1:nrow(df),labels=df$Mc1)+ 

# labs(title="Effect of Exposure", x="Coefficient values",y = "") 

  #geom_vline(xintercept =0, color = "black", linetype = "dashed", alpha= .5)+ 

  #theme_classic() 

#dev.off() 

 

#Mc3 

modNames<-c("DL","halfDL","Zero","NA","C") 

markerName<-"3" 

parName<-"exposed" 

trueMc3exposed<-5 

 

# Create a data frame with the mean, lower, and upper values of the coefficients 

coeffs <- data.frame( 

  modNames=c("Detection Limit","Half Detection Limit","Zero","Complete 

Observations","Censored"), 

  mean=c(resultsMean[paste(sep="_",modNames,markerName),parName]), 

  lower=c(resultsquantiles2.5[paste(sep="_",modNames,markerName),parName]), 

  upper=c(resultsquantiles97.5[paste(sep="_",modNames,markerName),parName])) 

 

 

# Use the data frame to create the table for intercept 

resultsTable <- coeffs 

 

resultsTable 
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# Use the data frame to create the graph 

df <- coeffs 

Mc3exposed <- ggplot(data=df, aes(y=modNames, x=mean, xmin=lower, 

xmax=upper))+ 

  geom_point()+ 

  geom_errorbarh(height=.1)+ 

  geom_vline(xintercept = trueMc3exposed,lty=2,lwd=1.25, col="darkgrey") + 

  labs(title="Effect of Exposure", x="Coefficient values",y = "")+ 

  geom_vline(xintercept =0, color = "black", linetype = "dashed", alpha= .5)+ 

  theme_classic() 

 

 

 

#df<-data.frame( 

# modNames=c("DL","Half DL","Zero","Complete Observations","Censored"), 

   

   

# mean=c(resultsMean[paste(sep="_",modNames,markerName),parName]), 

# lower=c(resultsquantiles2.5[paste(sep="_",modNames,markerName),parName]), 

# upper=c(resultsquantiles97.5[paste(sep="_",modNames,markerName),parName]) 

   

#) 

 

#png("myGraphmc3E.png",width=16,height=9,units="cm",res=300) 

#Mc3exposed = ggplot(data=df, aes(y=modNames, x=mean, xmin=lower,  

#                   xmax=upper))+ 

# geom_point()+ 

# geom_errorbarh(height=.1)+ 

# geom_vline(xintercept = trueMc3exposed,lty=2,lwd=1.25, col="darkgrey") + 

  # scale_y_discrete(name ="", breaks=1:nrow(df),labels=df$Mc3)+ 

# labs(title="Effect of Exposure", x="Coefficient values",y = "") 

  #geom_vline(xintercept =0, color = "black", linetype = "dashed", alpha= .5)+ 

  #theme_classic() 

 

#dev.off() 

 

grid.arrange(Mc1Intercept, Mc1gender,Mc1age, Mc1exposed, nrow = 2, ncol =2) 

 

grid.arrange(Mc2Intercept, Mc2gender,Mc2age, Mc2exposed, nrow = 2, ncol =2) 

 

grid.arrange(Mc3Intercept, Mc3gender,Mc3age, Mc3exposed, nrow = 2, ncol =2) 
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