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ABSTRACT
Longitudinal studies provide valuable insights into changes and factors influencing
responses over time, but inappropriate methods can lead to erroneous results. This study
evaluates longitudinal data analysis methods for estimating antibody titres, focusing on
correcting inappropriate commonly used methods and providing recommendations for
optimal statistical inference. The study contributes to the knowledge base in Malawi
and addresses the gap in appropriate longitudinal modelling techniques. Using
inappropriate statistical methods in longitudinal data analysis can yield misleading
results, affecting the validity and reliability of research findings. Addressing this issue
is crucial for ensuring accurate estimation of antibody titres. In this, study a comparative
approach was employed, analyzing both real-world and simulated data to assess the
performance of different modelling techniques. A longitudinal censored mixed model
used in the simulated data to account for lower limits of detection and contrasted this
to imputations of censored values to 0, DL/2, DL, and complete case analysis. Censored
regression models and imputations were used for non-linear, non-longitudinal PCVPA
data. Raw data used arithmetic means, while log-transformed data used geometric
means. The longitudinal aspect of the data is accounted for through random effects. By
simulating ELISA data with known vaccination and age effects evaluated the
effectiveness of statistical models in estimating antibody concentrations. The analysis
of both real-world and simulated data reveals significant insights into the performance
of different statistical methods. Findings indicate that certain models perform poorly in
capturing the effects of age, exposure, and gender. However, the censored model stands
out by providing estimates closer to the true values and narrower confidence intervals,
particularly in intercept estimation. The comparison between real-world and simulated
data underscores the importance of selecting appropriate statistical methods for
longitudinal data analysis. The study's results emphasize the significance of the
censored model in improving estimation accuracy and reducing bias. Thereby,
enhancing understanding of longitudinal data analysis for antibody titres, contributing

to advancing statistical inference in research.
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CHAPTER 1

INTRODUCTION
This chapter presents the brief background of the study, the knowledge gaps that were
identified, the objectives of the study and the importance of the study.

1.1 Background
1.1.1 Background to Antibody Titres

Antibodies are specific chemicals that bind to the antigens used for their production
(Crowther, 2000) . They are produced in response to antigenic stimuli and are mainly
protein in nature. They belong to a group of serum known as globulins, they are also
known as immuno-globulins because of their immune response functions. Antibodies
are subdivided into five subtypes known as IgA, IgD, IgE, IgG and IgM based on
molecular size, structure and function (Crowther, 2000). According to Crowther (2001)
antibody titres measure how much antibody for specific pathogens an organism has
produced. The enzyme-linked immuno-absorbent assay (ELISA) system is widely used
for measuring antibody titres and antigens.

There are two main approaches to estimating antibody titers from ELISA data; that is
Standard curve fitting and endpoint titration. In standard curve fitting method it
involves fitting a standard curve by plotting the optical density (OD) or other
measurement values against known concentrations of the antibody standards. The
unknown antibody concentrations can then be determined by interpolating their OD
values onto the standard curve (Yang et al., 2016). Whilst in endpoint titration the
sample is serially diluted, and the endpoint titer is defined as the reciprocal of the
highest dilution that gives a reading above a pre-determined cut-off value or threshold
(Yang et al., 2016). The cut off is chosen for each dilution step to determine the

endpoint titer.

Recent studies have highlighted some limitations and potential improvements to these

antibody titer estimation methods, these limitations include introducing errors which
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leads to biases in model fitting and potentially misrepresenting lower concentration
limits. Therefore, it is recommended that these lower limits must be validated to ensure

the accuracy of antibody titer measurements.

There are different end point titers, which are limit of detection, limit of quantitation
and limit of blank all these are used to describe the smallest concentration of an analyte
that can be reliably measured by an analytical procedure (Armbruster & Pry, 2008).
Limit of blank (LoB) according to Epi 17 protocol guideline it is defined as the highest
apparent analyte concentration expected to be found when replicates of blank sample
containing no analyte are tested (Armbruster & Pry, 2008) and this is given by LoB =
mean blank + 1.645 (standard deviation of blanks). The (lower) limit of detection (LoD)
is the lowest analyte concentration likely to be reliably distinguished from LoB and at
which detection is feasible. It is determined by using both test replicates of a sample
known to contain low concentration and also measured limit of blank which is deduced
as LoD = LoB + 1.645 (standard deviation of low concentration sample). The (lower)
limit of quantification (LoQ) is defined as the lowest concentration of an analyte that
can not only be detected but also measured up to predefined targets of accuracy and
precision (Armbruster & Pry, 2008). By definition LoQ > LoD > LoB.

Below is a graph illustrating the difference between limits of blank, detection, and
quantification, according to guideline EP17, Protocols for Determination of Limits of
Detection and Limits of Quantification which was published by Clinical Laboratory
and Standards Institute (Tholen, 2004).

Figure 1: lllustrating the relationship between LoB, LoD and LoQ, the solid line
represents the results distribution of LoB, the dashed line represents the results

distribution of LoD and the dotted line represents the results distribution of LoQ.



As it has been mentioned, recent studies have made significant advancements in the
estimation of antibody titers, particularly focusing on improving accuracy and
addressing limitations that have been mentioned above in the existing methods. The
key points that were highlighted are; addressing measurements challenges, studies have
addressed challenges related to measurements falling below the limit of detection
(LOD) in antibody assays. New approaches, like the adjustment for Bi-censoring
(ABC) method, have been developed to handle measurements below the LOD
effectively, ensuring more robust estimations of antibody titers across various assays,
including the hemagglutination inhibition assay (HAI) (Ge et al., 2022). But little has
been done on data that is below detection limit. Another is adjusting for censored data

and simulation studies.

In adjusting for censored data came up in order to mitigate biases introduced by values
below the LOD, recent studies have proposed novel methods to adjust coefficient
estimates, accounting for the censored nature of these measurements. By applying these
adjustments, researchers can obtain more accurate estimates of antibody titer increases,
particularly in the context of vaccine studies (Ge et al., 2022). This is one of the methods

that has been taken into account in this study.

Simulation studies, this is a key cornerstone in this thesis. Although several simulation
studies have been conducted to mimic real-world scenarios in antibody assays,
generating data that closely resembles actual assay results. And also even these
simulations have been instrumental in developing and validating new methods for
estimating antibody titers, ensuring reliable and unbiased measurements(Ge et al.,
2022). Little has been done on data that is censored to the left and have detection limit

at the same time longitudinal nature.

1.2 Problem statement

In this thesis longitudinal dataset of IgG antibody data which contained some missing
values and subject to a pre-specified LoD was used. Often, antibody titre data are
analyzed using imputation techniques and other methods like calculation of the
arithmetic mean and fitting simple linear regression without considering the nature of

concentration data, censored data, or longitudinal data.



Statistically, data below the LoD / LoQ (identical in the data for the present study) are
left censored. There are many methods to handle such censored observations, some
based on statistical theory, some on heuristic. One commonly used method involves
discarding censored observations; this is used when you know that the data does not
contain the information you need. Simple imputation techniques form another
approach. Missing data are substituted with fixed values (typically either 0, the
LoD/LoQ or a value half-way between 0 and the LoD/LoQ). While simple imputation
maintains the sample size, and is easy to use, it artificially reduces variability, thus

underestimating the variance and standard deviation of the data.

Another approach is the use of non-parametric methods, which are based on fewer
assumptions. For example, non-parametric methods like the Wilcoxon rank-sum test
may also work well in antibody titre data. Apart from a marginal reduction in power,
these non-parametric methods has some limitations. The main limitation is that non-
parametric methods do not extend easily to more sophisticated analyses where you
adjust for covariates or confounders and they do not help at all when your goal is

estimation or prediction (as opposed to identifying associations).

Furthermore, Censored regression techniques, borrowing ideas from time-to-event
analysis have been available for some time for example, Tobit regression which treat
data below the lower limit of detection (LOD) as censored data and it accounts for both
left and right censoring in the data. and the techniques from survival analysis are mostly

used for estimating parameters.

However, in the context of antibody titre or ELISA, it is also important to work on the
log scale, given the nature of data generation. For instance, the geometric mean is
meaningful compared to the arithmetic mean. This natural log scale arises because it is
more important to know when the values are halving or doubling than a change in

absolute value.

But what is less clear is how to incorporate these ideas into longitudinal analyses where
data are correlated and statistical models need to account for that. So, in summary, there
are three main challenges for longitudinal data analysis of antibody titre data which we

aim to address in a single analysis framework:
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e Left-censored data due to a LoD/LoQ.

e Longitudinal / correlated data.

e Skew data where the focus of analysis is on relative not absolute change.
To this end, this thesis will investigate the impact of ignoring these challenges and using
simple, sub-optimal but easier to use techniques.

1.3 Study objectives
The main objective is to assess the impact on statistical inference of sub-optimal
analysis methods.
Specifically, the study wants to;
e To quantify the bias and the underestimation of variance due to simple
imputation methods.
e To quantify the impact of ignoring the logarithmic scale on data interpretation.
e To evaluate whether the above issues are exacerbated in a longitudinal data

setting.

1.4 Significance of the study
There are several impacts if statistical inference is not properly done. For instance, as

already discussed above, analysing longitudinal antibody titre data using imputation
techniques and using arithmetic mean instead of geometric mean models poses
challenges as bias is introduced and variance is underestimated. And also, it affects
interpretation, for it is more difficult to interpret absolute value than relative change,
and it is also harder to compare two groups. The statistical approaches explored and
used in this study reduce the bias mentioned and provide a principled approach to
analysing antibody titre data and correct ways to deal with such data.

This study will primarily show the correct ways of dealing with this data and clearly
show how wrong results can be if sub-optimal methods are used. The research report
will add to the longitudinal analysis knowledge base that is currently available in
Malawi. Besides, the study will also correct the inappropriate methods that are mostly
used, assess their implications, and make recommendations on the best type of

longitudinal model to use for estimating antibody titres.



1.5 Thesis structure

The thesis is structured as follows: Chapter 2 gives a literature review of different model
diagnostic statistics. Chapter 3 describes the methodology used for this study. Chapter
4 presents the results. Chapter 5 provides a discussion, a conclusion, and

recommendations.



CHAPTER 2

LITERATURE REVIEW ON METHODS
This chapter reviews the literature on statistical analysis methods that are used in 1)
longitudinal data analysis, and 2) analysis of antibody titre data. As part of this, the
chapter also touches on the concept of geometric and arithmetic means and on censored

regression techniques.

2.1. Overview of longitudinal data analysis.
Longitudinal studies involve the repeated measurement of individuals over time to

study changes in responses and the factors influencing these changes (Fitzmaurice et
al., 2011). Weiss (2005) expands this definition to include the collection of outcomes,
treatments, or exposures at multiple follow-up times, emphasizing the importance of
temporal ordering in longitudinal data analysis. This type of data is described as
multivariate and hierarchical, with observations nested within subjects (Weiss, 2005).

The structure of longitudinal data, characterized by multiple observations within
subjects ordered across time, necessitates consideration of its unique properties for
analysis (Fitzmaurice et al., 2011). Hedeker & Gibbons (2006) highlight the advantages
of longitudinal studies, noting their increased power compared to cross-sectional
studies due to the independent information provided by repeated measures.
Additionally, each subject acts as their own control, reducing intra-subject variability

relative to inter-subject variability.

Longitudinal studies allow for the separation of temporal effects within individuals
from cohort effects at baseline (Hedeker & Gibbons, 2006). This distinction is crucial
in understanding changes over time and considering different time scales such as cohort
and period effects. In contrast, cross-sectional studies may confound aging effects with
cohort differences (Brown & Prescott, 2015).

Despite the benefits of longitudinal studies, challenges exist, such as the non-

independence of data observations within individuals, requiring sophisticated statistical
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methods to address this dependency (Hedeker & Gibbons, 2006). Parameter estimation
for certain models can be computationally intensive due to iterative processes and the

lack of closed-form solutions.

Attrition, leading to missing data as participants drop out over time, poses a significant
challenge in longitudinal studies (Hedeker & Gibbons, 2006). Reasons for attrition, like
perceived lack of benefit or adverse effects, can introduce bias and impact the sample's
representativeness, potentially affecting the generalizability of findings.

Proper statistical analysis of longitudinal data must account for the intra-subject
correlation of response measurements to ensure valid inference (Fitzmaurice et al.,
2011). Neglecting this correlation can lead to invalid results, affecting confidence

intervals and the outcomes of statistical tests.

In summary, longitudinal data analysis methods account for multiple observations
within subjects ordered across time, addressing challenges such as non-independence,
missing data, and the need to properly model intra-subject correlation for accurate

statistical inference.

2.2 Geometric mean and Arithmetic mean.

The sample mean which is the arithmetic mean is the most frequently used statistic for
summarizing research data in applications in which the response of interest is measured
on a continuous scale (Olivier et al., 2008). The arithmetic mean (AM) captures the

average value for a series of numbers, mathematically it can be represented as;
n

X= Xi) (1)

3=

i=1
Where n is the number of observations and X; is the i —*" observation of the random
variable X, i =1, ... ,n.
The geometric mean (GM) is obtained by calculating the n'™ root root of the product of
a collection of n numbers and is a measure of central tendency (Olivier et al., 2008).
To come up with geometric mean formula let’s consider X;, X5, ..., X,, then geometric

mean is defined as;

GM = "/x1x5 ... Xp, (2)



This can also be written as;

1
LogGM = alog(xlx2 o Xp) 3)

1
= E(logxl + logx, + -+ logxy)

_ Xlogx;
B n

logx;
P c:lQX) @

GM = exp(

The main distinction between geometric and arithmetic means is that, in order to
determine the geometric mean, all the n numbers in the given data set must be
multiplied, and the observed result must be taken as the n' root. The arithmetic mean

is determined by adding up the n numbers in the dataset and dividing by n.

2.3. Bootstrap method
Bootstrapping is a resampling procedure that uses data from a sample to generate a

sampling distribution by repeatedly taking random samples from the known sample
with replacement (Cameron & Pravin, 2005) it is also defined as simulation methods
for frequentist. It is one of the widely applicable computer intensive statistical tools that
can be used to yield estimates of parameters that are difficult to estimate otherwise. The
bootstrap method is commonly used in case where there is complicated statistic and no
analytical formula is available (Wehrens et al., 2000).

The fundamental idea in bootstrap is repeatedly draw samples with replacement from
the observed data to simulate the variability inherent in the data collection process. For
instance, given an observed dataset X = (xq, x5, ..., X;,), the bootstrap procedure
involves generating multiple bootstrap samples denoted as X* = (x7, x5, ..., x;,), by
randomly selecting observations with replacement (Davison & Hinkley, 1997). The key
concept is using these resampled datasets to approximate the sampling distribution of a

statistic of interest.

Given a bootstrap sample X*, calculating the statistic of interest, denoted as 6*;

6" = g(x1,x3, ..., xn) (5)
Thereafter, this process is repeated for several times (B iterations) to create an empirical
distribution of 8*. The result is the collection of bootstrap statistic 65,65, ...,05
(Davison & Hinkley, 1997).



The aim of this empirical distribution is to use it to make statistical inferences. For
example, one can estimate the confidence interval for the population parameter by
determining the range between the a/2 -th and 1 — a/2-th percentiles of the bootstrap
statistic:

(6; /2 01_q /Z)The bootstrap method can be applied in several ways; bootstrap in
hypothesis testing, bias reduction, confidence intervals and estimation of standard
errors (Cameron & Pravin, 2005). In this thesis bootstrap confidence intervals were
used in real world PCVPA data to come up with confidence bands. Bootstrap
confidence intervals offer several advantages, they are versatile, applicable to various
statistical problems and particularly useful when underlying distribution is unknown or
complex. Additionally, bootstrap confidence intervals can be constructed for almost

any statistic making them a valuable tool for statistical inference.

In general, bootstrap methods provide a powerful and widely applicable tool in
statistics, to assess uncertainty and derive confidence intervals in the absence of
distribution information. The methods simplicity and ability to provide reliable
estimates for a variety of statistical problems makes it widely used (Davison & Hinkley,
1997).

2.4 Censoring
Censoring occurs when the event of interest is not observed for some subjects because

either 1) it occurred before the study started (left censoring), 2) it did not occur before
the study is terminated (right censoring) or 3) it occurred between study visits (interval
censoring). When censoring occurs, the researcher has only partial information about
the subjects for which censoring occurred (Turkson et al., 2021). Censoring is common
in survival analysis for it represents a form of missing data (Kleinbaum & Klein, 2005).
In survival analysis, almost all censoring is right censoring and there are three broad
reasons why right censoring might occur; a person is lost to follow up during the study
period, a person withdraws from the study or a person does not experience the event
before the study ends (Kleinbaum & Klein, 2005). Longitudinal data are also sometimes
censored, for the same reasons as in survival analysis, but also due to study design (e.g.
when study visits are scheduled which can lead to interval censoring) or because an

event of interest has already occurred before the study started.
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As already mentioned above, there are three types of censoring, right censoring, left
censoring and interval censoring (Turkson et al., 2021). Right censoring is widely
known for it is common in survival analysis as well as longitudinal analysis, it occurs
when individuals have not experienced the event of interest by the end of the study or
the last available follow-up time. For example, if we assume that there is a time T and
a censoring time b, theT ’s are independently and identically distributed with probability
function f(t) and survival function S(t). The exact life time T of a subject will be
known, if and only if T is less than or equal to b; if T is greater than b, the subject is a
survivor and his event time is censored at b. The data from this experiment can be
represented by pairs of random variables(K, &), where §indicates whether the lifetime
corresponds to an event(§ = 1) or is censored(é = 0), and K is equal to T if the
lifetime is observed and b if it is censored. For a right-censoring K = min(T;, b), where
K is some time variable and a and b some points in time (Klein & Moeschberger, 2003)
(Klein & Moeschberger, 1997).

Interval censoring occurs when the event of interest is known to have occurred within
a specific time interval but the exact timing within that interval is unknown. In other
words, it can be by study design ; for example, study visits every 6 months, but that
participant experiences an event of interest (say heart attack) between visits, or no exact
date known just that it occurred between two schedule visits i.e. (a<T<b) (Turkson et
al.,, 2021) In this type of censoring the observed data consist of intervals
I I, ..., Lywhere for each k = 1, 2, ..., m where k is the number of time intervals and
m is the total number of time intervals. In this case an uncensored observation of an
observed death corresponds to an observed interval consisting of a single point
(Turkson et al., 2021). This type of censoring commonly occurs when periodic
assessments of the outcome event of interest is done at discrete time points rather than

continuously.

This thesis focused on this left censoring. Typically, this occurs when the event of
interest has already occurred before enrolment. Left censoring is very rare for studies
observing events but it is commonly encountered in laboratory data when dealing with

continuous data subject to detection limits.
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To define left-censoring, for example, a time X associated with a specific subject in a
study is considered to be left censored if it is less than censoring time a. For left
censoring to occur the event of interest must occur for the subject before that person is
observed in the study at time a (T<a). For such subjects since they have already
experienced the event sometime before time a, but the exact time is not known.
Therefore, the exact time will be known if and only if X is greater than or equal to a.
The data from a left censored sampling scheme can be represented by pairs of random
variables(T, §), where T is equal to X if the lifetime is observed and §indicates whether
the lifetime corresponds to an observed event (6§ = 1)or is censored(s = 0), for left
censoring T = max(X;,b) (Turkson et al.,, 2021). In laboratory studies, the
measurement of the analyte is equivalent to the event time in event time data. Here, left
censoring occurs if there is a lower limit below which the laboratory assay cannot yield
a valid measurement anymore. Value below this lower limit of detection are left

censored.

Klein et al (2003) concluded that left censoring is a special case of right censoring with
the time axis reversed, and it is for this reason there have been few special techniques

developed solely for left censored data.

In addition to afore mentioned reasons of censoring, censoring can also be due to events
of interest. When this happens, it becomes informative censoring and this introduces
bias. In most longitudinal analyses, it is assumed that censoring is non-informative or
random. This occurs when the probability of censoring is unrelated to the event of
interest or the censoring is considered independent of the underlying survival time or

outcome.

2.4.1 Methods for censored data
There are several methods of handling censored data, depending on the nature of
censoring. As previously stated, censoring can be of 3 ways; either censoring to the
right, censoring to the left and interval censoring. Some of the methods commonly used
in handling censored data include likelihood-based approaches, imputation approaches,

dichotomizing the data and complete data analysis (Turkson et al., 2021).
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Likelihood-based approaches use estimation methods, which involve constructing a
likelihood function that models the probability distribution of both observed and
censored values., and many of these methods maximizes the likelihood under certain
model assumptions, including the censoring mechanism. This type of approaches
includes Kaplan- Meier, log-rank test and the Cox regression (Turkson et al., 2021).
The Kaplan-Meier method also called the product limit estimator is the most popular
method when dealing with survival analysis for it requires weak assumptions i.e.
assumes no distribution but it utilizes all the information i.e. right censored data and
fully observed data (Hosmer et al., 2008). It is a non-parametric method used to estimate
survival probability S(t) from observed survival times (Hosmer et al., 2008). Let 0 <
t; < -+ <t, be the observed death times, let n; be the number of individuals at risk.
And let d; be the number of observed deaths at t;,i = 1, ..., n then the Kaplain-Meier
estimator is given by;

so=[]==-[Ta-D (6)

i:TiSt i:TiSt
Where 7; is the number of individuals at risk right before the i death time.

The log-rank test also called the Mantel-Haenszel test (when comparing only 2 curves),
is a statistical significance test that is used compare two or more groups. This test is
also obtained by constructing a 2x2 table at each distinct death time, and comparing the
death rates between the two groups conditional on the number at risks in the groups
(Collet, 2004). Considering the null hypothesis there is no difference between survival
population curves. i.e. the probability of an event occurring at any time point is the
same for each population. The test statistic is calculated as follows

(0, — Ey)? 4 (0, — Ep)*
Ey E;

x*(logrank) = (7)

Where 0, and 0, are the total numbers of observed events in groups 1 and 2,
respectively and E; and E, are total numbers of expected events.

Then the Cox regression or the Cox Proportional Hazard model is a semi-parametric
model. It is semi-parametric because it makes no parametric assumptions regarding the
baseline hazard. The Cox proportional hazard model makes parametric assumptions

concerning the effect of the predictors on the hazard function but makes no assumption
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regarding the nature of the hazard function A(t) (Harrell, 2001). Since the only
assumption made is on proportionality of the baseline hazard, therefore, it means that
the hazard ratio is constant over time (Collett, 2015). PH is the common approach used
in research to model the effects of covariates on survival. It can be defined as; let
Y1, .-, yj be the values of j covariates Y3, ..., Y;, then the hazard function is given as the

following model (Cox regression model);

h(t) = ho(t) exp (ZLl(fi}’i) (8)

Where 0; = 04,03, ..., 0, IS @ 1 X j of regression coefficients and h(t) is the baseline

hazard function at time t.

Furthermore, when analyzing left-censored data using Kaplan-Meier survival analysis
and Cox proportional hazards regression, it is essential to handle the inherent
uncertainty about the exact event times. For Kaplan-Meier, left-censored events can be
treated as tied events occurring at time zero, assuming they happened at the earliest
possible time. This involves considering censored events at time zero as if they occurred
simultaneously. In Cox regression, left-censored data can be included by treating it as
regular censored data, assuming that censoring at time zero is non-informative. The
Cox model assumes that the probability of censoring at a given time is unrelated to the

probability of the event occurring.

A common type of method of handling censored data, particularly left-censored
concentration data from laboratory experiments, is given by various imputation
techniques. These methods have several disadvantages, specifically the introduction of
bias and under-estimation of variance. These methods depend on model assumptions
that are difficult to check without information (Turkson et al., 2021). Many researchers
use imputation techniques because of lack of statistical software packages for analysis

because some censored data require sophisticated methods.

This thesis used data that were left-censored due to the detection limit. The common
methods for left-censored data due to a detection limit are imputation to zero,
imputation to the detection limit and imputation to half the detection limit. Imputation
to zero, where events below the detection limit are treated as if they occurred at the
earliest possible time, often time zero (Turkson et al., 2021). Although this method is
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straightforward, it assumes that all events below the detection limit occur
simultaneously, potentially introducing bias and underestimating the true event times.
Imputation to the detection limit this involves assigning all left-censored observations
the value of the detection limit itself. This method acknowledges that events occurred
but provides limited information about when they occurred. However, imputing events
to the detection limit might introduce an upward bias, as it assumes all left-censored
events happened precisely at the threshold, ignoring potential variability in their true
occurrence times (Turkson et al., 2021).

Imputation to half the detection limit. This method strikes a balance between imputing
to zero and imputing to detection limit, thereby acknowledging the uncertainty in the
event timing and assuming events are equally likely to occur at any point within the
detection range. This method mitigates biases introduced by the other imputation
methods, thereby providing a more conservative estimate of event times (Turkson et
al., 2021).

In addition to this, sometimes researchers resort to dichotomizing the data, Dichotomizing
left-censored data involves transforming continuous survival times into binary
outcomes, typically distinguishing between "event" and "non-event" based on a
specified threshold (Leung et al., 1997). While this method is utilized to simplify
analyses and accommodate left-censored information, it carries inherent limitations.
Dichotomization results in a loss of precision and statistical power, as it disregards the
continuous nature of survival times. The choice of the threshold becomes crucial,
introducing subjectivity and potentially influencing conclusion (Leung et al., 1997).
Additionally, dichotomizing may mask important temporal patterns in the data, as it
oversimplifies the nuanced information embedded in the left-censored survival times
(Leung et al., 1997). When dealing with dichotomization of left-censored data it has to
be done with caution, considering its potential impact on the reliability and
interpretability of survival analyses.

Finally, another method sometimes used for censored data is complete case analysis. Censored
observations are completely ignored and only the uncensored complete observations are
included in the analysis. This type of analysis is commonly adopted because of its simplicity

but it has several disadvantages. These include estimation bias for inference based on analysing
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uncensored data only may be biased. Another reason is loss of efficiency since there is loss in

sample size (Leung et al., 1997).

2.4.2. Censored regression models
The basic model that was used in this thesis is the censored regression model which
was developed from the Tobit model which was named after Tobin (1958) who applied
it to individual expenditure on consumer durable goods (Cameron & Pravin, 2005).
These are statistical models designed to handle data where the dependent variable is
subject to censoring, meaning that certain observations are only partially observed or
limited by some threshold. These models are particularly relevant in scenarios where
the outcome variable is only observable within a certain range or under certain
conditions (Amemiya, 1984). As it was previously stated censoring can be either right-
censored (values above a certain threshold are unobservable) or left-censored (values
below a certain threshold are unobservable). Censored regression models address this

challenge and provide estimates while accounting for the censored nature of the data.

The censored regression model can be defined by using a latent variable y* which is
only partially observed and assumed to be normally distributed. Let
X1,i, X2,i X35, -, Xp; D€ p Observed variables for the i"" study participant, i=1,..,n. The
standard censored regression model (Tobit model) can be written as;

Vi =Bo+ P1xy; + -+ Bpxpi & 9)
Then, yi = X{B +¢ (10)
with &; are assumed to be independent and identically distributed from N(0,02) . Itis
also assumed that y; and x; are observed for = 1,2, ...,n, but y; are observed if
yi =y; ify; > DL,
yi =0ify/ <DL
To estimate the parameters the likelihood for the above equation needs to be computed
and optimised. Let’s define X to be an n X p matrix whose i row is x/, we assume that
lim,_,n"1X'X is positive definite. Note that y; > DL and y; < DL may be changed
toy; > yyand y; <y, without essentially changing the model, whether y, is known
or unknown, since y, can be absorbed into the constant term of the regression. Then
the likelihood function of the standard censored regression model to estimate the

parameters is given by;
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L= Y [ (F/p) Z [0~ ) an
0

Censored regression models, offer a powerful framework for handling censored data
and provide estimates that account for the limitations imposed by censoring (Amemiya,
1984).

2.5. Longitudinal data analysis models
This subsection explores different models that are commonly used in analysing

longitudinal data. There is a class of regression approaches that is commonly

considered; mixed effects models which are the major focus of this thesis.

2.5.1 Mixed effects models
Mixed effects models are popular for modelling longitudinal data and a basic
characteristic of these models is the inclusion of random effects into the regression
models to account for the influence of a grouping variable, e.g. subjects with repeated
observations. Such grouping variables are called random factors and they are used to
capture differences in the response variables and differences in the effects of covariates
(referred to as fixed factors) between different levels of the grouping variable(s) on the
response (Hedeker & Gibbons, 2006). Because of the inclusion of both random and
fixed factors (and hence the estimation of the associated random and fixed effects /
model coefficients), these models are called mixed effects models. Such mixed models
also allow to estimate the degree of variation at the level of the grouping variable that
exists in the data. For what follows in this review and discussion of mixed effects
models, we assume a single grouping variable and that that variable is the subject ID

variable.

A key feature of mixed models, in the context of longitudinal data where subjects are
followed up over time, is that subjects are not assumed to be measured on same number
of time points and this means that all data can be easily included in the analysis. The

inclusion of all data has the advantage that it increases statistical power.
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2.5.1.1 Linear mixed effects models.
Linear mixed effects (LMMs) models are an extension of the general linear model to
include random factors. LMMs make specific assumptions about the variation in
observations attributable to variation within subjects and to variation between subjects.
These models permit regression analysis with correlated data and also they specify
variance components that represents both within-subject and between-subject variation
in outcomes and trajectories. Linear mixed model parameters can be estimated using
either Maximum Likelihood (ML) or Restricted Maximum Likelihood (REML)
methods. Maximum Likelihood estimation aims at maximizing the likelihood function,
which measures how well the model explains the observed data. ML estimates the
variance components of both fixed and random effects, providing parameter estimates
that maximize the probability of observing the given data under the assumed model.
However, ML tends to yield biased estimates, especially for random effects, as it can

be sensitive to sample size (Fitzmaurice et al., 2011).

While Restricted Maximum Likelihood estimation addresses the bias issue by
maximizing the likelihood function, but under the condition that the estimates are
consistent with the fixed effects. REML removes the fixed effects and only focuses on
the random effects' variance components. This method is particularly useful for
estimating the variability associated with random effects without being influenced by
fixed effects. REML estimates are often considered more reliable for understanding the
underlying variance structure in the data. In summary, ML estimates both fixed and
random effects, whereas REML primarily focuses on the variance components of
random effects, providing more robust estimates of the underlying variability in the
data (Fitzmaurice et al., 2011).

Let’s assume a sample of N subjects are measured repeatedly overtime, let Y;; denote
the response variable for the it" subject on the j* measurement (Fitzmaurice, Laird, &
Ware, 2011). Let B,y + B;i1X;; denotes the observation line path for subject i where X;;
denotes the time of measurement j on subject i. The within-subject variation is given
by Yi; — (Bio + Bi1X;j) and the between-subject variation among intercepts is
var(f;,)and among (Cameron & Pravin, 2005) slopes is var(f;;). Let us also assume

that the within-subject intercepts and slopes are normally distributed.
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Within subjects:
Yij = Bio + BunXij + &; (12)

where &;;~N(0,0%)

And between subjects: (gii) ~N[(§ii> ' (ID)(l)Z gii)]

Re-writing this can be b;y = (Bjo — Bo) and b;; = (Bi1 — P1)
Therefore, this model can be written as;
Yij = Bo + B1Xij + bio + bin Xij + &5 (13)
A more general form, with more than one independent variable, can be written as;

Yij = Bo+ B1Xis + -+ BuXix + bio + binXin + -+ + bipXipp + &5 (14)
where By, f1, ..., Bx represent fixed effects and by, b;s, ... by, represent random effects.
Therefore, Y;; = X{;8 + Z{;b + ¢;; (15)

Where X;; = Xjj1, Xij2, Xijz, - Xijie and Zj; = X;j1, Xijo, Xijs, - Xijp and it is assumed

that the covariates Z;; are a subset of the variables in X;; thus p<k .

2.5.1.2 Longitudinal censored models

Literature shows that different types of longitudinal models have been used to deal with
censored data, but the more common model was the use of linear mixed models by
imputing the data. The data that was used in this thesis was longitudinal and censored
to the left, hence the sophisticated linear model employed.
Recall from the previous section on censored or tobit model, this was originated from
linear regression analysis. Let y* be the latent variable that is not censored and assume
linear regression (Twisk & Rijmen, 2009).

yi=xip+e (16
Where £;~N(0,5?)
Addition to that lets assume that y* can be observed at a range of ([, p) only that the
values of y* are smaller than I or larger than p. Hence the observed dependent variable
y is obtained from y*.

yi=Llfory <l (17)

yi=yi forl<y;<p (18)
yi=pfory; zp (19)
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Furthermore, for longitudinal censored or tobit model, since E (y) is not eaqual to E (y*)
because of censoring. For distribution of y is not the same as the distribution of y*
(Twisk & Rijmen, 2009).
Therefore, for longitudinal censored model can be defined in a similar way by let y* be
a linear mixed model thus;

Yij = Bo + B1Xi1 + bio + €5 (20)
Which can also be written as;

Y = X{;B+Z;b+¢; (21)
So, to account for censoring in the data then a longitudinal censored mixed model can
be written as;
Yilbi = Xi;B + Zijb + &;; (22)

Where ¢;;~N(0,0%) and b;~N (0, D)
Where i denotes subject i and X;; denotes the time of measurement j on subject i.
It is challenging to estimate the longitudinal model's parameters because the likelihood
involves integrals over the random effects b; that are not analytically solvable (Twisk
& Rijmen, 2009). When the dimensionality of is too low the integral can be
approximated using the Gaussian quadrature. The likelihood of the mixed censored
model to estimate parameters can be defined as;

Yiilb = Xi;B + Zi;b + &; (23)
Where ¢;;~N (0,0%) and b;~N (0, D)
Where i refers to case i and j to the jth measurement conditional on the case specific

parameters b;, a linear model is assumed with

E(Y;|b:) = X{;B + Zi;b + &; (24)
Where y is obtained from y* as;
yij=lforyj; <1 (25)
yij = yij for L <y <p (26)
yij=pfory;zp (27)
Therefore, the density function of y is
flij=0)=F(y=1) (28)
fy) =i )fori<y;<p (29
frij=p)=1-F(yj; =p) (30)
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Hence the contribution to the likelihood of case i is obtained as a summation of the j
measurement for case i and integrating this summation over the case specific
parameters (Twisk & Rijmen, 2009). Thus

L= [ D fopNGioDd G
b

Therefore, the likelihood of the mixed censored model can be written as

L= z L, 32)

2.5.2. Generating Estimates Equations (GEE)
GEEs are an estimation approach for generalized linear models (GLM) that accounts
for correlated data and clustered data. It provides a flexible framework for modeling
the relationship between variables while accounting for correlation within clusters.
Most statistical methods often assume independence among observations, which may
not hold in the case of repeated measurements or clustered data. GEE addresses this

limitation by incorporating correlation structures(Hedeker & Gibbons, 2006).

To estimate GEE let Y;; represent the response for the i" individual in the j*cluster at
time t. The GEE model is typically expressed through a mean model E(Y;;) = w;;

where y;; is a function of covariates.

The working correlation matrix V characterizes the within- cluster correlation. The
GEE estimating equations take the form;

U =" R =0 (33)

j=1
Where f is the vector of parameters, U(p) is the score function, V; is the working
correlation matrix for cluster j, R;(f) is the contribution to the score from the cluster j

(Hedeker & Gibbons, 2006).
In longitudinal data, GEE is specifically designed for data collected over multiple time

points or from clustered units, such as individuals within families or patients within

hospitals. While in correlation structures GEE allows for specification of various
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correlation structures e.g. exchangeable, autoregressive and unstructured to capture the

dependence among observations within clusters(Hedeker & Gibbons, 2006).

In general GEE is a powerful tool for analyzing correlated and longitudinal data.

2.6 Review of Previous Research

The analysis of antibody titre data is crucial in understanding immune responses and
vaccine efficacy. Longitudinal studies often encounter censored data, where values fall
below detection limits, leading to challenges in accurate estimation. Researchers have
addressed this issue by utilizing imputation techniques and linear mixed models to
handle censored data effectively. Twisk & Rijmen (2009) emphasized the importance

of considering censoring in data analysis for better interpretation.

A summary review of papers on antibody titre data reveals various approaches to
handling censored data. Bonate et al. (2009) and Zhao (2017) used imputation
techniques for endpoint titer and concentration data, respectively, while Persichetti et
al. (2017) and Devanarayan (2017) opted for deletion of censored data. VVan Stappen
(2015) and Moraschini (2015) employed deletion and imputation methods for optical
density and concentration data. These studies highlight the diversity in methods used to
address censored data in antibody titre analysis.

The thesis adopted a censored mixed model to assess bias and underestimated variance
resulting from inappropriate imputation techniques. The main objective was to compare
the impact of sub-optimal analysis methods with principled longitudinal data models.
By focusing on accurate estimation and addressing limitations in existing methods, the

study aimed to enhance the reliability of antibody titre measurements.

Recent advancements in antibody titre estimation methods have focused on addressing
measurement challenges and adjusting for censored data. New approaches, like the
Adjustment for Bi-censoring (ABC) method, have been developed to handle
measurements below the limit of detection effectively, ensuring robust estimations of
antibody titres. Simulation studies have played a crucial role in developing and

validating new methods, ensuring reliable and unbiased measurements.
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2.6.1 Summary review of papers on antibody titre data.
Table 1 below summarizes review of a few different papers on antibody titre data, how
the data was analysed, the antibody data type used and whether the data was
longitudinal or not. And the methods used to deal with censored data.
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Table 1: Summary review on Antibody titer data

Name of the Paper Antibody data type Longitudinal Method to deal with the Censored Data
Bonate et al (2009) Endpoint titer Yes Imputed to half detection limit

Persichetti et al (2017) Endpoint titer No Deletion

Zhao (2017) Concentration Yes Imputation

Van Stappen (2015) Optical density No Deletion

Moraschini (2015) Concentration No Imputed to half detection limit

Yang (2015) Optical density No Imputed to half detection limit
Devanarayan (2017) Concentration No Deletion
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CHAPTER 3

METHODOLOGY

The data and techniques used in the study are covered in detail in this chapter.

3.1 Real-world data

This thesis project used primary real-world serology data from the Pneumococcal
Vaccine for Vulnerable Populations in Africa (PCVPA) study (Swarthout et al., 2022).
The 13-valent pneumococcal vaccine (PCV13) targets 13 serotypes of the
pneumococcal bacterium Streptococcus pneumoniae. The PCV13 vaccine was
introduced in 2011 using a 3+0 schedule, where one dose at each of 6 weeks, 10 weeks,
and 14 weeks of age was given to under 1-year-olds (Swarthout et al., 2020). This has
been effective in reducing the prevalence of nasopharyngeal carriage and invasive
pneumococcal diseases. For example, a trial study in Malawi, specifically in Karonga,
showed that PCV13 was effective compared with 2 years before the introduction of
PCV. Vaccine serotype (VT) carriage among young PCV-vaccinated children (1-4
years of age) was 28.2% before vs. 16.5% after PCV introduction (Swarthout et al.,
2020). However, even though it has been shown that there is reduced vaccine serotype
(VT) carriage in Malawi, there is persistent residual carriage of all 13 vaccine serotypes
among children vaccinated with PCV13. One plausible reason for this is the waning of
the PCV13 vaccine after the first year of life(Swarthout et al., 2022).

An observational surveillance study targeting under five children from Blantyre using
random sampling for pneumococcal carriage and repeated cross-sectional surveys was
conducted from 2015-2019(Swarthout et al., 2020). For this thesis project, a subset of
samples from PCVPA was used for serological assaying in the ongoing PAVE study,
and 638 samples were randomly selected from the larger parent survey(Swarthout et
al.,, 2022). Of these, 556 were primary samples and 82 were secondary
samples(Swarthout et al., 2022). The data used in this project are serotype-specific
immunoglobin G (IgG) levels of children aged 4 weeks to 60 months, which were
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measured via ELISA. Enzyme-linked immunosorbent assay (ELISA) detects and
measures antibodies and hormones in the blood. The assay relies on the principle of
binding specificity between an antibody and an antigen (Crowther, 2000). When
measuring these serotypes using ELISA, a surface is coated with a molecule of interest,
such as an antigen or antibody. The sample containing the target is then added, allowing
binding to occur. Thereafter, after washing away unbound material, an enzyme-linked
secondary molecule is introduced that binds specifically to the target. Subsequent,
addition of a substrate for the enzyme induces a colour change of intensity, which is
proportional to the amount of the target substance. Then this colour change is measured,
providing a quantitative assessment of the targets presence(Crowther, 2000). IgG is a
type of antibody produced by plasma B cells in the human body and can serve as a

proxy measurement of immunity.

3.2 Descriptive Statistics.

To summarize the results, the means, medians, interquartile ranges and confidence
intervals for the estimated parameter for each of the three biomarkers were calculated.
The primary interest was on i) bias (which model yields the least biased results, i.e. gets
closest to the true value) and ii) the associated estimates of uncertainty (e.g. we would
expect the imputation models to underestimate uncertainty associated with the
parameter estimates).

3.3 Simulated data

As the focus of this project was an evaluation of different methods for modelling left-
censored, cross-sectional IgG data, this project also simulated enzyme-linked
immunosorbent assay (ELISA) data where the true effects of vaccination and the trend
with age were known. During this simulation, we first simulated study participants and
their characteristics. Specifically, we simulated patient IDs, number of visits, exposure
statuses to check if participants were exposed to the pathogen, ages and sex. Because
the ELISA assays used by the serosurvey had a lower limit of detection (DL) of 0.15
ug/mL, we used the same DL during the simulations, left-censoring any simulated 1gG
levels below the DL. To explore the performance of different modelling approaches,
we simulated data for three hypothetical biomarkers, each representing a different
scenario (specifically different levels of missing data, different strengths of effects of

vaccine and trend with age). To mimic the real-world analysis process, we also
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simulated samples of known concentration (so called standards) for standard curve

fitting (ELISA measurements are optical density measurements and using a standard

curve, these optical densities can be mapped back to actual antibody concentration

levels).

Furthermore, we simulated antibody concentrations using a four-parameter logistic

regression for all the three biomarkers. By taking the inverse of the four-parameter

logistic curve and using the concentrations we simulated the optical densities. To

simulate the entire dataset, we followed the following steps;

Simulate the study participants and their characteristics n = 100. For example,
the number of samples to be analysed which was ns = 5, probability for a
randomly selected participant to have been exposed to the pathogen was set at
P = 0.4, set the detection limit which was assumed to be the same for all
biomarkers dl = 0.15.

Simulate two data frames to retain information about patients and samples.
Simulate participants at different time points, i.e. number of visits, because the
data being simulated was longitudinal. These time points were five different
visits and were assumed to be 1 year apart.

Simulated age using gamma distribution and gender for each patient. In
addition, exposure status (whether the patient has been exposed to pathogens)
is simulated based on the specified probability of P = 0.4.

Random effects for all three biomarkers were simulated using a normal
distribution.

Set values for the percentage of missing data, effect of age, effect of vaccine,
effect of sex.

Simulate theoretical average concentration measurements based on the above
factors, i.e. gender, sex, exposure status and random effects.

Add random noise to simulate natural fluctuations in IgG levels that were
normally distributed. The resulting ‘noisy’ values are referred to as the true
concentration levels.

Random noise was added was in two levels of exponential distribution, because
we simulated random variation for the actual concentration and the noise due to

the measurement process.
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e Set parameters for four parameter logistic curve. Using the inverse of this curve,
we translate the true concentrations to true optical densities (OD).
e Add noise to mimic the imperfect measurement process in real life. These values

are taken as the simulated 1gG optical density measurements.

After the simulation, the data were analyzed using the following steps (replicating the
way the real-world optical density data are processed and analyzed):
e Using least-squares estimation, fit a four-parameter logistic regression model to
the simulated standard samples.
e Use the fitted curve to convert the simulated optical densities into estimated

concentration levels for the simulated patient samples.

Thereafter, we removed the standards used when calculating the measured
concentrations using least square estimation and saved the data to fit the various
analysis models to investigate how well the different models can estimate the

parameters used during the data simulation.

The data we simulated was longitudinal in nature because it involved repeated
measurements on a set of subjects and was also left-censored given the detection limit
we used. During this simulation, we generated one dataset with 100 participants and

five samples per individual simulated at equal time points.

Given that the data were simulated, we set the values for each of the model parameters.
From these, we can derive the true values of some parameters estimated by the models,
specifically the model intercept. To derive the true values for the intercepts for the three
sets of simulated data, we took the expectation of the antibody concentration random
variable used during the simulations. Note that the variables can be considered to be
random during the simulation process (since we drew random samples from specific
parametric distributions, whereas in the models, the predictors are assumed to be fixed

and the response variable random). Below are the calculations;

From equation &) we take an expectation of E(Yl- j) =

E (31Sij+ﬁ'zAij+ﬁ3Eij+ui+€ij+Vij

: ) @9
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Where S, A, and E are the factor variables Sex, Age, and Exposure.

| = index for individuals

J = index of observations within individuals

B4 ... B3 = parameters of the variables

U; = Random effect

&;j,Vij = Exponential distribution cases

K = Scaling parameter

In the above expectation, to derive the true value of the intercept, we only need to
consider the terms that do not involve the independent variables Aj, Sij ,and Ej;.
Therefore, we need to consider only:

Ui gij Vl])
E(K + X + X (35)

We note that E(%) = 0, since U;is normally distributed where U;~N (0,52). There we

are left with
1 1
Eij E)_ﬁ Vii _ 2
E<K+K_K+K_K (36)

Since ¢;; , V;;are exponential random variables, they are both distributed exponentially
. 1 . 1 . 1 1
with means —, respectively —and variances— and —
A1 Az A1 A2

Hence, from the simulation for first biomarker, lambda 1 = 0.5, and lambda 2 = 0.75,
and K = 1. For second biomarker, rate 1 = 0.3, rate 2= 1, and K= 2, the last biomarker,
which was the third one, rate 1= 0.75, rate2 = 0.4, and K = 2. These three biomarkers
also differ in the proportion of missing data and all these values were chosen to make
the biomarkers differ.

Therefore, substituting in the formulae yields;
Measured concentration of simulated biomarker1;

1 1
hos , Yozs
1 1

=2+133=3.33

MC1 =

Measured concentration of simulated biomarker 2;
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2 2
=167+ 0.5 =2.17

1 1
ez =103, 1

Measured concentration of simulated biomarker3;

Y Y
_ /075, /04
Me3 =200+ =

=0.67 +1.25 =192

3.3.1 Data analysis of simulated data

For the analysis, we used a longitudinal mixed model but accounted for the simulated
censored data in five different ways. We considered three different simple imputations
(imputation of censored values to zero, imputation to the detection limit and imputation
to half the detection limit). We also conducted a complete case analysis. Finally, as a
fifth analysis approach, we used a censored regression model.

The linear mixed model is given below. Let Y represent the continuous outcome
variable (IgG concentration). We included three fixed predictors; age of the patient,
exposure status of the patient and sex of the patient. In addition, the models had a fixed
intercept and a random effect for patient ID. During simulation, the data was log
transformed; therefore, the longitudinal mixed model for the first scenario is given by

Yij = Bo + B1Age + B.Sex + B3Exposure + p; + €;; (37)

Where B; ... B; were fixed effects parameters age, exposure and sex fixed factors, 3,
was the fixed intercept and u; was the random effect associated with the individual i, i

indexes individuals, j indexes observations within individuals and &;; was a residual

error term assumed to follow a N (0, %) distribution.

For the first four analysis methods (imputations to 0, half the detection limit, detection
limit and the complete case analysis), the above model was fitted using standard
maximum likelihood estimation using the Ime4 package and the Imer() function in the
R environment for statistical computing (R Core Team, 2023).

For the censored regression model, however, the models were fitted slightly differently
because the likelihood contributions from the censored observations were different

from those from the observed measurements.
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Specifically, due to left censoring, we did not observeY;;, but rather ¢;;, where the values
below the detection limit were censored. ¢;; took the value of Y;;for Y;; > p;;and took the
value p;;, the known lower limit of detection for the jth response on subject i.

_» y>p
YuTl, y<p

Where p was the lower limit of detection (p = 0.15 pg/mL in our data)
Assuming a Gaussian random effect model, this allowed us to write down the log-

likelihood below, for an observed data set

1(Bo, B1, B2, B3, 7%)
= Z Z(log (f(‘Pij|ﬁ0'/31'ﬁz,ﬁ3, 02))

+log(g(Yilei0%))  (38)
Where;  f(¢i;|Bo, B1, Ba B3, 0%) represented the density function for the censored
observation ¢;;
- (g(Yijl@ij, o) represented the density function for the observed measurement
Y;; given the censored values ¢,;;.

These density functions can then be defined as below to explicitly express the log-
likelihood;

(wij—ﬁo—B1Age—BZSex—BsExposuTe—Hi))

f(@ijBo, Br. B2, B3, 0) = q’( L@@ i=Pi)

andg(Yij|@ij0%) = ¢ (@) (39)

Where; - @ () represents the CDF of the standard normal distribution.
- @ () represents the PDF of the standard normal distribution.
- L () represents the indicator function that equals 1 if the condition inside is true
and 0 otherwise.
Lastly, the log-likelihood is then expressed as;

l(.BO' ,81, 1821 1831 02)
~ Z | ( ((«pi,- — By — P1Age — B, Sex — B3 Exposure — m)))
= og| ®

o U@ij=pij))

(Yij_q)ij) \‘
+Zlog é +/ (40)
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Where @ (.) and ¢ (.) are the probability and cumulative density function, respectively,

of the standard normal distribution.

To estimate the parameter values in this censored regression we maximised the log-
likehood function. This was done using the Imer() function, which was used to fit the
linear mixed-effects model to the data. The Imer() function optimizes the log-likelihood

to find the parameter estimates that best describe the observed data.

3.3.2. Data analysis for PCVPA DATA
For analysis of the real-world PCVPA data apart from the four models, which were
imputing to detection limit, imputing to half detection limit, imputing to zero, and using
acomplete case, we used censored regression model. Because these data had a detection
limit of 0.15, to be specific, a lower limit detection means that observations were left
censored. For easy interpretation these data were also log transformed, and we assumed
a Gaussian linear model for y. Because of these data, we had a single variable, age in
months. The natural logarithm of the measured IgG concentration with a single
explanatory variable age, A is given by;

Y=B1+BA+e=f(Ap)+¢ (41)

Where e~N(0, c2).
However, since the data were left censored with a lower limit of detection, we did not
observe Y but rather y,, where the values below the detection limit were censored. y, took
the value of Y for Y > p and took the value p, the known lower limit of detection.

Yy, Y>p
P Y=p

Where p was the lower limit of detection (p = 0.15 pg/mL in our data).For we assumed

=]

Gaussian model, the observed data set {A,, yN,i}n . log-likelihood can be written as;

i=

l(ﬁ,O'z) — Zy B lOg <¢ (yN.i _5(‘4',3))>
+ ZyN'iSp log (CD <—a )) (42)

Where ¢(.) and &(.) are the probability and cumulative density functions of the

standard normal distribution.
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This thesis is a comparative study, and in simulated data, we incorporated the
longitudinal aspect because we were trying to investigate whether the effects of age,
gender and exposure status become more pronounced or worsen when working with
longitudinal data. In addition, longitudinal studies introduce complexities, i.e.

correlated measurements within subjects and potential time-dependent trend.

Specifically, this evaluation involves compares the performance of imputation
methods, considering bias and variance metrics in both cross-sectional and longitudinal

analyses.

3.4 Variables in the Study
The outcome of interest was the 1gG concentration at different ages from 0 to 60

months. Age (in months) was used as the predictor variable for IgG concentrations of
the different strains. In this dataset, we measured serotype-specific 1gGs against the 13
vaccine serotypes namely; 1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F and 23F and
two non-vaccine serotypes 12F and 33F, as well as IgGs against three pneumococcal
proteins PsaA, NanA, and Ply. The population level was estimated, serotype-specific
immunogenicity profiles were obtained using linear regression and censored regression

models.

The simulation study used the same outcome variable (level of serotype-specific
antibodies as measured by IgG concentration) for all three biomarkers but used three
predictor variables: age, sex and exposure status.

Therefore, all outcome variables in both the PCVVPA and simulation studies were

continuous. The explanatory variables were chosen on the basis of the literature on
bioassays and available data from the PCVPA study.
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CHAPTER 4

RESULTS AND APPLICATION TO THE DATA

The data used are explained in detail in this chapter. Furthermore, the chapter provides

technical details on the analysis methods that were used in the study.

4.1. Implementation
All analyses and simulations were implemented in R version 4.3.2 (R Core Team, 2023)

with the use of packages censReg (Henningsen, 2022) for the censored regression
likelihood, ggplot2 (Wickham, 2016) for the data and results visualization and boot
(Cante & Ripley, 2022) for the bootstrapped confidence intervals.

4.2. Overview

This thesis project largely focuses on simulated data where we simulated 1gG
concentration data subject to a lower limit of detection, and deployed different methods
of dealing with censored data. To show the implications of using imputation in the
analysis of data subject to a lower limit of detection, we compared three different
method of simple imputations (impution of censored data to 0, the detection limit or
half the detection limit) and compared the results from analyses of these imputed data
to the results from a complete case analysis and from using a censored regression
model. The latter is statistically more principled than the other four methods because it
makes full use of all the data and accounts for the uncertainty associated with left-
censored observations. In the final set of analysis results, the PCVPA serosurvey data
are used to illustrate the same five modelling approaches on real-world research data

and validate some of the conclusions from the simulation study.
4.3 Descriptive Statistics for simulated data.

Table 2, summarizes the descriptive statistics for all the three biomarkers and

explanatory variables. For example, in biomarker 1, the mean age for those exposed to
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the pathogen when using the model Imputing to DL is 0.093. These results demonstrate

how these variables differ under various modeling and imputation approaches.

Table 2: Descriptive Statistics for Biomarker 1, 2 and 3

Biomarker | Model Variable Mean Median | Standard
deviation
1 Imputedto | Age 0.093 0.092 0.045
DL
Exposed 0.933 0.925 0.329
Gender 2.372 2.343 0.363
Imputed to Age 0.102 0.102 0.046
% DL
Exposed 1.011 1.002 0.333
Gender 2.575 2.548 0.345
Imputed to Age 0.111 0.110 0.048
Zero
Exposed 1.089 1.084 0.341
Gender 2.777 2.761 0.341
Complete Age 0.076 0.076 0.045
case analysis
Exposed 0.769 0.765 0.323
Gender 1.892 1.883 0.322
Censored 0.107 0.107 0.049
regression Age
Exposed 1.052 1.035 0.347
Gender 2.668 2.646 0.398
2 Imputed to 0.102 0.237 0.030
DL Age
Exposed 1.011 1.219 0.219
Gender 2.575 0.795 0.190
Imputed to 0.263 0.263 0.031
% DL Age
Exposed 1.296 1.297 0.219
Gender 0.897 0.200
0.902
Imputingto | Age 0.288 0.288 0.033
Zero
Exposed 1.371 1.372 0.223
Gender 0.998 0.216
1.002
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Complete Age 0.212 0.212 0.030
case analysis

Exposed 1.136 1.135 0.220

Gender 0.697 0.690 0.191
Censored 0.258 0.258 0.032
regression Age

Exposed 1.281 1.280 0.222

Gender 0.884 0.876 0.202

3 Imputed to 0.111 0.107 0.032

DL Age

Exposed 2.420 2.365 0.444

Gender 0.246 0.239 0.161
Imputed to 0.135 0.132 0.029
% DL Age

Exposed 2.617 2.584 0.381

Gender 0.308 0.301 0.180
Imputing 0.161 0.160 0.031
Zero Age

Exposed 2.617 2.804 0.330

Gender 0.308 0.364 0.210
Complete 0.177 0.772 0.029
case analysis | Age

Exposed 2.086 2.060 0.377

Gender 0.080 0.175 0.163
Censored 0.136 0.038
regression Age 0.140

Exposed 2.621 2.574 0.473

Gender 0.308 0.195

0.321

4.4 Estimation of the effect of explanatory variables on concentration
As discussed above, we used simulated data to investigate the differences in results
obtained from the five different models and to quantify how well these different

methods performed.
Results for the parameters for each of the three biomarkers are shown on forest plots

and presented in tables. These plots and tables show the true values of the model

parameters against their estimates from the different models.
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Knowing these values, we then compared these true intercept values with those

estimated by the various models.

Intercept Effect of Sex
Zero —_— Zero —
Half Detection Limit —_—— Half Detection Limit —_——
Detection Limit —_— Detection Limit ——
Complete Observations _— Complete Observations —_—
Censored —— Censored ——
0 2 4 0 1 2 3
Coefficient values Coefficient values
Effect of Age Effect of Exposure
Zero d Zero _—
Half Detection Limit > Half Detection Limit —_—
Detection Limit - Detection Limit —_—
Complete Observations - Complete Observations —_—
Censored - Censored i
0.00 0.05 0.10 0.15 0.20 0.0 05 1.0 156
Coefficient values Coefficient values

Figure 2: Forest plot of estimated parameters for the first biomarker. True values are

indicated by the dashed grey vertical lines

The black dots are the point estimates of the effects of age, exposure, and sex on the
first biomarker against the measured concentration, and the black horizontal segments
represent the associated confidence intervals. The closer a point estimate is to the
vertical true value line, the better (in terms of higher accuracy/lower bias) that particular
model estimates the corresponding intercept or effect parameter for the first biomarker.
From the graphs above, except for the intercept parameter, for which imputing to the
detection limit results in the least bias, imputing to the half detection limit and using a
censored model perform best, i.e., result in the least bias. From the graphs above, no
substantial differences in the width of the confidence intervals can be seen; in other
words, the different methods yield estimates with similar precision.

The above graphs are also summarized in Table 3, which shows the true values for each
parameter and the point estimates together with 95% confidence intervals for the

different modeling approaches.
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Table 3: Comparison of true values, point estimates values, and uncertainty

values of different modelling approaches

Biomarker | Variable | True | Parameter estimates from the different modelling
Value | approaches
Biomarkerl Imputed | Imputed | Imputed | Complete Censored
to DL to¥2DL | to zero case regression
analysis
Intercept | 3.330 | 3.549 3.060 2.900 4.276 3.224
(2.168- (1.428- (1.609- (3.046- (1.920-
4.765) 4.366) 4.113) 5.432) 4.420)
Age 0.100 | 0.093 0.102 0.111 0.076 (- | 0.207
(0.010- (0.015- (0.019- 0.011- (0.015-
0.183) 0.193) 0.204) 0.165) 0.208)
Exposed | 1.000 | 0.933 1.011 1.089 0.769 1.052
(0.313- (0.379- (0.444- (0.170- (0.405-
1.597) 1.668) 1.752) 1.421) 1.748)
Sex
Male 2.500 |2.372 2.574 2.777 1.892 2.668
(1.735- (1.955- (2.138- (1.304- (1.976-
3.120) 3.252) 3.468) 2.566) 3.503)

Table 3 shows the point estimates and confidence intervals to show variation for the
intercept and the coefficient for the different predictor variables: age, exposure, and
sex, in biomarker 1. Comparing these point estimates and confidence intervals with the
true value, we were able to evaluate the accuracy and bias of each modelling approach

for the first simulation approach.

The results in the table above show that imputing to half detection limit and using
censored model performs the best; as their results are closer to the point estimate.
However, imputation to half detection limit is the closest to the true value, which means
that the result has the least bias. The table above also shows that imputing to half
detection limit confidence interval is narrower whilst using censored model is wider,
which means that imputing to half detection limit demonstrates greater degree of

precision.
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Therefore, these results mean that given the five models, it is good to impute data to
half the detection limit despite the fact that using censored model performed well in
point estimation, but imputing to the half detection limit was closest, which means that
it introduces the least bias. The wider the confidence interval, the more uncertainty or
variability is accounted for. Therefore, imputing to the half detection limit has a
narrower confidence interval, which signifies a greater degree of precision, highlighting
the method’s ability to provide estimates with reduced uncertainty.

The graph below shows the effects of the explanatory variables on the second

biomarker.
Intercept Effect of Sex
Zero —— Zero ——
Half Detection Limit —_— Half Detection Limit —_—
Detection Limit — Detection Limit —_——
Complete Observations —_— Complete Observations —_—
Censored —— Censored —
0 1 2 3 00 05 1.0 15
Coefficient values Coefficient values
Effect of Age Effect of Exposure
Zero — Zero —_——
Half Detection Limit —— Half Detection Limit ——
Detection Limit —— Detection Limit ——
Complete Observations — Complete Observations —
Censored —— Censored ——
00 01 02 03 04 05 00 05 10 15 20 25
Coefficient values Coefficient values

Figure 3: Forest plot of the second simulated biomarker

From the graphs above, except for the intercept parameter, for which using the censored
model results in the least bias, all methods performed poorly in estimating the effects
of sex, age, and exposure. Moreover, none of the confidence interval from either
method cover the true value of the three parameters. This shows that all models
introduce bias and underestimate variance regarding explaining the effects of the three

variables.

The above graphs are also summarized in Table 4, which shows the true values for each
parameter and the point estimates together with 95% confidence intervals for the
different modeling approaches.

The table 4 summarizes all the results explained in the graph above.
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Table 4: Comparison of true values, point estimates values and uncertainty

values of different modelling approaches for biomarker 2.

Biomarke | Variabl | True | Modelling approach
r e Valu
e
Biomarker Imputed | Imputed to | Imputed | Complete Censored
2 to DL % DL to zero case regression
analysis
Intercep | 2.17 | 2.371 1.950 1.528 2.820 2.028
t (1.543- (1.130- (0.616- (2.017- (1.159-
3.117) 2.729) 2.410) 3.585) 2.844)
Age 0.50 |0.238 0.263 0.288 0.212 0.258
(0.183- (0.206- (0.224- (0.153- (0.200-
0.297) 0.324) 0.357) 0.270) 0.321)
Expose | 2.50 | 1.223(0.7 | 1.298(0.85 | 1.371(0.9 | 1.136 1.281
d 83-1.659) | 5-1.735) 42-1.810) | (0.705- (0.838-
1.557) 1.731)
Sex
Male 1.70 | 0.802 0.902 1.002 0.697 0.884
(0.446- (0.530- (0.589- (0.324- (0.514-
1.202) 1.320) 1.454) 1.070) 1.298)

Table 4 shows a comparison of true values, point estimates and uncertainty estimates

in the form of confidence intervals for second biomarker.

From the above table results, it shows that the methods perform poorly with regard to

the effects of age, exposure and sex. Except in intercept where censored model is used,

the point estimate is closer to the true value and its confidence interval is narrower

compared to the rest of the models. Despite the fact that all methods performed poorly

for the effects of sex, age and exposure, the point estimate that was closer to the true

value is imputation to zero and the confidence interval that includes the true value and

is narrower is for the imputation to zero method.

40




The confidence intervals for imputation to detection limit, imputation to half detection
limit, complete case and censored model all include the true value but have varying
widths. Despite having different widths in terms of the confidence interval, the
confidence interval for most of these methods was wider, thereby indicating more

variability or uncertainty in the estimate.

In addition, most of these methods performed poorly because some simulation settings
make estimation very difficult. For instance, an increase in exposure and age values in
measured concentration two during simulation and a proportion of missing data since
all the biomarkers had different proportions, resulted in all methods in this scenario
yielding substantial bias and underestimation of uncertainty.

The graph below shows the effects of the explanatory variables on the third biomarker.

Intercept Effect of Sex
Zero — Zero *
Half Detection Limit _— Half Detection Limit -
Detection Limit T S— Detection Limit
Complete Observations _— Complete Observations 4 ————&—
Censored| ———&f—— Censored -
0 1 2 3 4 00 02 04 06 08
Coefficient values Coefficient values
Effect of Age Effect of Exposure
Zero Zero ——
Half Detection Limit Half Detection Limit ——
Detection Limit s e—— Detection Limit ——
Complete Observations —_— Complete Observations —
Censored S S— Censored ——
0.000.050.100.150.200.25 0 1 2 3 4 5
Coefficient values Coefficient values

Figure 4: Forest plot of the third biomarker

From the graphs above, the imputing to half detection limit and imputing to detection
limit methods prove to be closer to the true value, which means the least bias introduced
in the results. On the other hand, graphs using censored model and imputing to zero
have the least bias, even though all the models performed poorly in estimating the
effects of age and exposure and not great in estimating the effect of sex. From the graphs
above, no substantial differences in the width of the confidence intervals can be seen;

in general, it is quite difficult to tell how different the confidence intervals are.
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The above graphs are also summarized in Table 5, which shows the true values for each
parameter and the point estimates together with 95% confidence intervals for the

different modeling approaches.

Table 5: Comparison of true values, point estimates values, and uncertainty

values of different modelling approaches for biomarker 3.

Biomark | Variab | True | Modelling approach
er le Valu
e
Biomarke Imputed | Imputed Imputed Complete | Censored
r3 to DL to¥2 DL to zero case regression
analysis
Interce | 1.92 | 2.196 1.658(0.2 | 1.120(0.0 | 2.905(1.2 | 1.590(-
pt 0 (0.358- | 52-2.662) | 90-1.981) | 73-3.996) | 0.440-2.977)
3.415)
Age 0.25 | 0.110(0. | 0.135(0.0 |0.161(0.1 | 0.080(0.0 | 0.140(0.081-
0 057- 83-0.197) | 05-0.223) | 27-0.145) | 0.226)
0.182)
Expose | 5.00 | 2.410 2.617(1.9 | 2.824(2.2 | 2.086(1.4 | 2.621(1.819-
d 0 (1.650- | 50-3.447) | 15-3.496) | 32-2.883) | 3.661)
3.379)
Sex -0.308
Male 0.60 | 0.246 (0.053- -0.370 -0.177(- 0.321(-
0 (0.061- | 0.663) (0.049- (0.035- 0.048-0.725)
0.581) 0.806) 0.521)

The above table presents the point estimates and confidence intervals for the intercept and the
coefficients for the different predictor variables in biomarker 3.

From the table above, the results show that all methods performed poorly in explaining
the effect of gender and exposure and not well in explaining the effect of sex. Except
in the intercept where imputing to the detection limit, the point estimate proves to be
closer to the true value, but imputing to the zero method its confidence interval is

narrower compared to the rest of the models. Despite all methods performed so poorly
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to the effect of age and exposure and not great in explain the effect of sex, imputation

to zero and using censored regression methods have least bias in all the graph.

In general, imputation to zero on the effect of exposure seems like narrower than the
rest of the models, thereby suggesting, less variability in the system. In general, the
imputation to zero modelling approach tends to result in narrower confidence intervals
for most variables, whereas the censored regression modelling approach tends to result

in wider confidence intervals.

Overall, the analysis of the three biomarkers reveals that imputing to half the detection
limit and using the censored model demonstrate superior performance, with results
closer to the point estimate. Notably, imputation to the half detection limit stands out
as the method closest to the true value, indicating minimal bias. In addition, its narrower
confidence interval, compared to the wider interval of the censored model, signifies a

greater degree of precision.

However, a general observation across all methods revealed poor performance in
explaining the effects of age, exposure and sex. An exception is found in the intercept,
where the censored model demonstrates a closer point estimate to the true value and a

narrower confidence interval.

Furthermore, it was noted that confidence intervals, especially in biomarker 2 and 3, all
methods encompass the true value in explaining some variables, but exhibit varying
widths. Despite differences in width, most intervals are wider, indicating more
variability or uncertainty in the estimates. Differences in simulation settings, such as
varying proportions of missing data and increase in exposure and age values for these
biomarkers, contribute to substantial bias and underestimation of uncertainty across all

methods.

4.5 PCVPA Study Results

The population average IgG age profiles in the PCVPA study were nonlinear. For
comparing the methods used in this thesis, linear models were used. The work in this
thesis was the groundwork for deciding on the methodology for the wider analysis

project of the PCVPA 1IgG data where non-linear functional forms were used together
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with censored, mixed regression models (Swarthout et al., 2022), but the extension to
non-linear functional forms was beyond the scope of this thesis project. The assays’
lower limit of detection was 0.15 pg/mL, which meant that the observations below this
limit were left censored. To account for left censoring, the censored regression model

was deployed as a method used.

4.5.1 Descriptive statistics for PCVPA data
638 plasma samples were evaluated in this study, of which 556 were primary samples
and 82 secondary samples that were linked to each primary sample. From the table
below, most serotype log transformed means are different across imputation methods.
The data were log-transformed for easy interpretation; therefore, the means calculated
below are geometric means. For instance, serotypes 6A, 19A, 19F and 23F show

notable difference in geometric means between imputations.

In addition, larger standard deviations indicate greater variability for, serotypes 6A,
19A, 19F and 23F, which contain higher standard deviations, thereby suggesting

increased variability in 1gG concentration for these serotypes.
Furthermore, from the table below, it can be easily seen that the confidence intervals

for the censored regression approach in most serotypes are wider as compared to the

rest of the models
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Table 6: Descriptive Statistics for all serotypes

Serotype Model Mean Standard Confidence
deviation Interval

1 Imputed to 0.311 0.043 0.245 -0.388
DL
Imputed to 0.268 0.041 0.205-0.341
Half DL
Imputed to 0.155 0.040 0.098 -0.230
Zero
Censored 0.275 0.043 0.171-0.410
regression

3 Imputed to 0.326 0.014 0.303-0.351
DL
Imputed to 0.254 0.023 0.218-0.294
Half DL
Imputed to 0.105 0.026 0.068-0.153
Zero
Censored 0.234 0.027 0.136-0.349
regression

4 Imputed to 0.324 0.017 0.298-0.352
DL
Imputed to 0.255 0.012 0.236-0.275
Half DL
Imputed to 0.127 0.003 0.122-0.133
Zero
Censored 0.245 0.012 0.180-0.350
regression

5 Imputed to 0.562 0.129 0.375-0.800
DL
Imputed to 0.537 0.130 0.349-0.779
Half DL
Imputed to 0.465 0.140 0.270-0.733
Zero
Censored 0.546 0.130 0.309-0.935
regression

6A Imputed to 0.841 0.288 0.448-1.401
DL
Imputed to 0.811 0.290 0.419-1.378
Half DL
Imputed to 0.728 0.296 0.340-1.320
Zero
Censored 0.820 0.292 0.364-1.717
regression

6B Imputed to 0.620 0.153 0.400-0.903
DL
Imputed to 0.587 0.152 0.370-0.871
Half DL
Imputed to 0.493 0.153 0.280-0.786
Zero
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Censored 0.598 0.154 0.323-1.064
regression

7F Imputed to 0.469 0.162 0.249-0.784
DL
Imputed to 0.443 0.164 0.223-0.766
Half DL
Imputed to 0.370 0.163 0.160-0.700
Zero
Censored 0.452 0.166 0.190-0.906
regression

9V Imputed to 0.461 0.080 0.341-0.605
DL
Imputed to 0.415 0.083 0.293-0.565
Half DL
Imputed to 0.296 0.093 0.167-0.475
Zero
Censored 0.423 0.085 0.251-0.699
regression

14 Imputed to 1.179 0.018 1.149-1.209
DL
Imputed to 1.144 0.012 1.123-1.164
Half DL
Imputed to 1.030 0.004 1.024-1.036
Zero
Censored 1.149 0.015 0.862-1.437
regression

18C Imputed to 0.330 0.037 0.273-0.394
DL
Imputed to 0.260 0.035 0.207-0.321
Half DL
Imputed to 0.125 0.025 0.088-0.171
Zero
Censored 0.245 0.036 0.153-0.406
regression

19A Imputed to 1.626 0.749 0.674-3.162
DL
Imputed to 1.601 0.744 0.657-3.128
Half DL
Imputed to 1.525 0.738 0.600-3.054
Zero
Censored 1.607 0.747 0.554-3.892
regression

19F Imputed to 1.539 0.496 0.856-2.493
DL
Imputed to 1.525 0.493 0.846-2.473
Half DL
Imputed to 1.456 0.512 0.762-2.456
Zero
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Censored 1.530 0.495 0.710-2.981
regression

23F Imputed to 0.381 0.030 0.333-0.432
DL
Imputed to 0.308 0.032 0.259-0.363
Half DL
Imputed to 0.159 0.025 0.121-0.202
Zero
Censored 0.291 0.034 0.190-0.450
regression

33F Imputed to 0.242 0.041 0.181-0.314
DL
Imputed to 0.172 0.042 0.109-0.253
Half DL
Imputed to 0.064 0.031 0.025-0.128
Zero
Censored 0.145 0.054 0.054-0.319
regression

4.5.2 Estimation of effect of age on 1gG concentration.
As discussed in the previous chapters, we used censored regression models to account
for lower limits of detection and contrast this to imputations of censored values DL,
DL/2 and imputed to zero, but because of log transformation 0 could not be used instead
0.0001 given the logarithm was taken of the IgG values. The antibody titre data (IgG
data) are naturally skewed, and it is more meaningful to discuss fold changes than
absolute differences; therefore, before model fitting, the data were log transformed so
that the fitted arithmetic mean corresponded with the log of the geometric mean in the
original data scale. We had 1gG concentrations for 14 serotypes. For all serotypes, we
imputed the data to the detection limit, half detection limit, zero (0.0001), and censored

regression models.

We used bootstrapping and the percentile method to calculate the confidence intervals
for the best-fit linear model for all serotypes. The results of all serotypes are presented
in the graphs below, where the geometric mean at each age point in months was
estimated. The results presented in the graphs below have the following colour code:
blue represents imputing to zero, red represents imputing to the detection limit, orange
represents imputing to the half detection limit, and black represents the censored model.
The black dots are geometric means of concentration for all data points within each 3-
month age band, and the grey dots are IgG titre data points for each sample, while the
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shaded area is the 95% confidence band for each model represented in the colour of the

line of model fit.

The main findings of these are summarised with only a handful of selected serotypes,
because several serotypes were analysed. The graphs below show the results for

serotypes: serotype 1, serotype 6A and serotype 4.
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Figureb: Different linear regression models for serotype 1.

Because the use of these data was to compare which model performed better, we fitted
all four models to serotype 1 data, which showed the relationship between age and IgG.
However, the focus was on different model fits. The above linear graph shows that
when you impute to zero, it introduces the least bias because all 20 geometric means
lie above the fitted line. When you impute the data to the detection limit, the model fit
was biased high, as most (11 out of 20) of the geometric means lie below the fitted line,
and it is the model fit that is highest among all four shown approaches. From the graph
above, it can also be seen that imputing to zero has a wider confidence band which,

means greater variability.
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Figure 6: Different linear regression models for serotype 6A

The above graph of serotype 6A showed not much difference in terms of bias because
almost all geometric means lie above and within in all methods. However, even though
it is like that imputing to zero showed least bias for only three geometric means are
above the fitted line. The above graph also shows that imputing to zero has a wider
confidence band than the rest of the model, which suggests an increased variability in

IgG concentration.
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Figure 7: Four linear regression models on serotype 4

When three separate models were utilized, all three graphs of various serotypes (1, 6A,
and 4) exhibited a similar pattern. This was also the case since the detection limit
utilized was a positive 0.15 g/mL. The above graph also shows how imputation to DL
biases high, as it can be seen that 15 out of 20 geometric means lie below the model fit.
Moreover, imputation to zero biases low as it can be seen that all geometric means lie
above the model fit. From the graph it is hard to tell which model underestimate
variance since some of the confidence bands are not clear, for instance, imputing to

Zero.

In general, imputation approaches are simple but ignore the uncertainty associated with
censored observations. In addition, imputing to zero or imputing to DL there is a risk
of biasing low or high respectively, and imputing to half detection limit often performs
well in terms of bias and is often very similar to the censored regression approach. In
principle, the censored regression approach is the most statistically principled, and the
only one correctly handling uncertainty associated with the censored observations.
However, it is also the least simple to implement and requires more advanced statistical
expertise. However, in practice, on the PCVPA data, the confidence intervals from the
censored regression model look very similar in terms of width to those from imputing

to half detection limit (DL/2); thus, so that this advantage could be limited in practice.
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CHAPTER 5

DISCUSSION, CONCLUSIONS AND RECOMMENDATIONS
Discussion of the results of the study as well as conclusion and recommendations are
presented in the section below.

5.1. Discussion

The confidence bands of the 95% confidence interval changed depending on the model
used. As previously stated, in principle approach confidence intervals from the censored
regression turn to be wider as they account for the extra uncertainty of the censored
observations which, the imputation method ignores. However, some imputation
techniques resulted in wider confidence intervals, for example, imputing to zero in
some cases. This was only when the imputation methods impute to values far away

from the non-censored observations, which resulted in wider confidence intervals.

Furthermore, in this study, the point estimates increased or decreased depending on the
model used in both data sets. The study also showed that the censored regression model
performed well as compared to imputation to DL, imputation to half DL, imputation to
zero, and the use of complete observational models, for it was less likely to
underestimate variance and in many of the simulated data examples, was the one with

least bias (though imputation to half the DL performed better in a few cases).

Although in the second and third biomarkers in simulated data, all methods performed
so poorly in explaining the effect of variables (age, sex and exposure) and also not so
great in explaining the effect of sex in third biomarker. Imputation to zero deemed to
be closer to the true value in most of the variables, thereby least bias was introduced.
And also, in second biomarker it was seen that imputing to zero had a narrow
confidence interval which meant less variability even though it was had to conclude

about confidence intervals, since confidence interval (Cl) of all methods vary in width.
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This study also used linear models in both simulated and PCVPA data despite having
population profiles that were non-linear for comparison purposes. However, assessing
the impact of functional form on performance was beyond the scope of this thesis
project. The author of this thesis contributed to the wider modelling project of the
PCVPA data that included non-linear function forms (see (Swarthout et al., 2022)
where the author of this thesis is a co-author). Use of the Kaplan-Meier method when
data distribution is not known (Canales et al., 2018). The disadvantage of this method
is that it does not perform well in multivariate analysis and is also not excellent with
left-censored data compared with right-censored data. The advantage of this model is
that it uses the entire dataset and is not restricted to using summary statistics for the
dataset. Another method is the use of substitution with a limit of detection DL (Canales
etal., 2018); this is done by halving the DL with a square root of half. The disadvantage
of this method is that it introduces error even though it is minimal, especially when
large portions of a data set are below the DL (Canales & etal, 2018), and it does not
account for left censoring in the data. Another method for dealing with left-censored
data is the use of maximum likelihood estimation (MLE). Since in censored
observations likelihoods are derived directly rather than for imputed values. Even

though in imputation techniques uses maximum likelihood estimation.

The use of a geometric mean in this study to be specific to the PCVPA study helped in
the interpretation. Because the antibody titre data are naturally on a logarithmic scale,

the use of an arithmetic mean could have affected the interpretation of the results.

Furthermore, the longitudinal aspect was incorporated in the simulated data; this helped
to take correlation into account, and from the results, it has been shown that the
longitudinal censored model performed better in all three biomarkers because it did not
underestimate variance, and bias was not introduced as it was seen in the first biomarker
results. The point estimates in the censored model were closer to the true value, and the
confidence interval was wider, although in some biomarkers, it was difficult to draw

conclusion on width.

5.2. Conclusion
The aim of this study was to assess the impact of suboptimal analysis methods on

statistical inference, mainly by quantifying the bias and underestimation of variance
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due to simple imputation methods. We also to assessed the interpretation challenges
when the logarithmic scale is ignored and evaluated these issues in a longitudinal data
setting. In this study, we looked at the use of four different imputation techniques:
imputation to detection limit, imputation to half detection limit, imputation to zero, and
the use of complete observations in the data as well as the use of censored models when

there is censoring in the data.

The findings suggest that the use of imputation techniques in data analysis introduces
bias and underestimates uncertainty. This has been evident in the simulated data for all
three biomarkers, where imputation techniques, for example, imputing to the detection
limit, have proved to be a worse model than the rest of the models, for it underestimates
variance and introduces bias. It has also been noted that despite other imputation
methods performing better than the censored regression approach at times this was not
consistently so the censored regression method performed best on average across
simulation scenarios. Of greater concern is the underestimation of variance, which can

lead to type | errors.

The results showed that the use of arithmetic mean in data like 1gG data is not a good
indicator of central tendency in naturally logarithmic data, and that interpretation is
straightforward in log-transformed data or when a log link is used. This study has also
revealed that if the logarithmic scale is ignored and the use of simple imputation in
longitudinal data settings, it may lead to similar outcomes, such as underestimating
variance and introducing bias in the data, as has been seen in simulated data where
longitudinal censored mixed models have proven to perform better on average across
all three biomarkers as compared to linear mixed models. The use of log-transformed
data in PCVPA data also made interpretation easier.

In conclusion, the best method to use is the censored regression model, which accounts
for censoring in the data. This comparative analysis study improved our understanding
of the methods of data analysis and assessed the impact on parameter estimates and

interpretation of inappropriate methods.
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5.3. Recommendations

It is important to emphasize the importance of thorough data examination before
applying imputation methods, highlighting the need for analysts to carefully assess the
dataset to ensure the appropriateness of the chosen technique.

Moreover, when dealing with log-transformed data containing censoring and detection
limits, it is better to use censored regression models over imputation techniques.
Because of the statistical robustness an accuracy offered by censored regression models
in handling the complexities of censored data, ensuring more reliable and precise results

in the analysis of such datasets.

The study also suggests that when data exhibits non-linear profile, the use of linear
spline regression models can be ideal and more effective. Linear spline regression
models are appropriate to be used in order to capture the non-linearity in the data, thus
giving a best-fit representation of the underlying pattern and trend. Using such linear
spline regression models for non-linear data profiles, researchers can increase the
model’s power to capture certain complexities in the data. This elevates the quality and

totality of the statistical analysis and interpretation.
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APPENDIX
PCVPA DATA GRAPHS
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R PROGRAMS USED TO ANALYSE THE DATA
Programmer: Susanne Ntchaula Barnaba

Program: Biostatistics Master’s Thesis — Longitudinal data
Supervisor: DR. Marc Henrion

PCVPA DATA ANALYSIS

rm(list=Is())

library(censReg)

library(VGAM)
library(boot)
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# helper functions
geoMean<-function(x,na.rm=T){
return(exp(sum(log(x[x > 0]), na.rm=na.rm) / length(x)))}

geoMeanCensoring<-function(x,left=0,right=Inf){
# will return an error message if no censoring in the data
require(censReg)
return(exp(coef(censReg(log(x)~1,left=log(left),right=log(right)))["(Intercept)"])) }

# read data and reformat

dat<-read.csv("C:/Users/DELL/Desktop/Susanne Barnaba
BACKUP/Literatureforsusanne/Msc project/data/PCVPA_serology_reformatted.csv")
#View(dat)

#summary(dat)

levels(dat$age_cat_gmc)[levels(dat$age cat_gmc)=="0-2m"]<-"0-02m"
levels(dat$age _cat_gmc)[levels(dat$age cat_gmc)=="3-5m"]<-"03-05m"
levels(dat$age_cat_gmc)[levels(dat$age cat_gmc)=="6-8m"]<-"06-08m"
levels(dat$age _cat_gmc)[levels(dat$age cat_gmc)=="9-11m"]<-"09-11m"
dat$age cat gmc<-factor(as.character(dat$age cat_gmc))

serotypes<-
c( 1,3, 4" "5 "6 A", "6B" " TF","9V" "14" " 18C","19A" " 19F","23F" ,"33F")

for(st in serotypes){
dat[,paste(sep="","res",st,"_num_ImpZero")]<-dat[,paste(sep="","res",st,"_num")]

dat[is.na(dat[,paste(sep="","res",st,”_num_ImpZero")]),paste(sep="","res",st,” num_|I
Zero")]<-0.01}

doAnalysis<-
function(dat,st,varNameOrig,varNameNum,varNamelmpDL,varNamelmpHalfDL,var
NamelmpZero,outPrefix,DL=0.15){

datGeoM<-
data.frame(ageCat=unique(dat$age_cat_gmc),geoM=NA,geoM_better=NA)

for(i in 1:nrow(datGeoM)){

datGeoM$geoM[i]<-

geoMean(dat[dat$age_cat_gmc==datGeoM$ageCat[i],varNamelmpHalfDL]) # note
that these use the simple DL/2 imputation for calculation

if(sum(dat[dat$age_cat_gmc==datGeoM$ageCat[i],varNameOrig]=="<0.150")>0){
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datGeoM$geoM_better[i]<-
exp(coef(censReg(as.formula(paste(sep="","log(",varNamelmpDL,")~1")),data=dat[d
at$age_cat_gmc==datGeoM$ageCat[i],],left=log(DL)))["(Intercept)"])

Yelse{

datGeoM$geoM_better[i]<-
exp(coef(lm(as.formula(paste(sep="","log(",varNameNum,")~1")),data=dat[dat$age
cat_gmc==datGeoM$ageCat[i],]))["(Intercept)"]} }
levels(datGeoM$ageCat)[levels(datGeoM$ageCat)=="0-3m"]<-">00m"
levels(datGeoM$ageCat)[levels(datGeoM$ageCat)==">3-6m"]<-">03m"
levels(datGeoM$ageCat)[levels(datGeoM$ageCat)==">6-9m"]<-">06m"
levels(datGeoM$ageCat)[levels(datGeoM$ageCat)==">9m"]<-">09m"

datGeoM$ageCat<-factor(as.character(datGeoM$ageCat))

datGeoM<-datGeoM[order(as.character(datGeoM$ageCat)),]
datGeoM$ageCatNum<-seq(1.5,58.5,by=3)

# remove NR values

idx<-which(dat[,varNameOrig]=="NR" | dat[,varNameOrig]=="QNS" )
if(length(idx)>0){datTmp<-dat[-idx,] }else{datTmp<-dat}

datTmp<-dat

# fit a linear regression model

linearModDL<-Im(as.formula(paste(sep="","log(",varNamelmpDL,") ~
ageMonths™)), data=datTmp)

linearModHalfDL<-Im(as.formula(paste(sep="","log(",varNamelmpHalfDL,") ~
ageMonths™)), data=datTmp)

linearModZero<-Im(as.formula(paste(sep="","log(",varNamelmpZero,") ~
ageMonths™)), data=datTmp)

#summary(linearMod)

#fit a Tobit regression model
modTobit<-vglm(as.formula(paste(sep="","log("",varNamelmpDL,") ~
ageMonths™)),
tobit(Lower = log(0.15)),data=datTmp)
#summary(modTobit)

#Plot of linear regression with geometric means
datNew<-data.frame(ageMonths=seq(0.1,60,length=1000))
xx<-datNew$ageMonths

cf<-coef(linearModDL,logSigma=F)
yyDL<-cf[1]+cf[2]*xx

predTmp<-predict(linearModDL, newdata = data.frame(ageMonths=xx), interval =
‘confidence’)
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yyDLLow <- predTmp[,2]
yyDLHigh <- predTmp[,3]

cf<-coef(linearModHalfDL,logSigma=F)
yyHalfDL<-cf[1]+cf[2]*xx

predTmp<-predict(linearModHalfDL, newdata = data.frame(ageMonths=xx),
interval = 'confidence’)

yyHalfDLLow <- predTmp[,2]

yyHalfDLHigh <- predTmp[,3]

cf<-coef(linearModZero,logSigma=F)
yyZero<-cf[1]+cf[2]*xx

predTmp<-predict(linearModZero, newdata = data.frame(ageMonths=xx), interval =
‘confidence’)

yyZeroLow <- predTmp[,2]

yyZeroHigh <- predTmp[,3]

cf<-modTobit@coefficients
yyTobit<-cf[1]+cf[3]*xX

#bootstrap 95% CI for tobit regression model
bxm<- function(formula, data, indices) {
d <- data[indices,] # allows boot to select sample
fit <- vglm(as.formula(paste(sep="","log(",varNamelmpDL,") ~ ageMonths™)),
tobit(Lower = log(0.15)),data=d)
cf<-fit@coefficients
xx<-seq(0.1,60,length=200)
yy<-cf[1]+cf[3]*xx

return(yy) }

# bootstrapping with 1000 replications
Results <- boot(data=datTmp, statistic=bxm, R=1000, formula=
as.formula(paste(sep="","log(",varNamelmpDL,") ~ageMonths")))

# view results
Results
#plot(Results)

# get 95% confidence interval
yyLowTobit<-rep(NA,ncol(Results$t))
yyHighTobit<-rep(NA,ncol(Results$t))
for(i in 1:ncol(Results$t)){
tmp<-boot.ci(Results, type="perc", index = i)$perc[4:5]
yyLowTobit[i]<-tmp[1]
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yyHighTobit[i]<-tmp[2] }

# Create a data frame for summary statistics
summary_table <- data.frame(
Model = ¢("Linear (DL)", "Linear (HalfDL)", "Linear (Zero)", "Tobit"),
Mean = c(mean(exp(yyDL)), mean(exp(yyHalfDL)), mean(exp(yyZero)),
mean(exp(yyTobit))),
SD = c(sd(exp(yyDL)), sd(exp(yyHalfDL)), sd(exp(yyZero)), sd(exp(yyTobit))),
Lower_CI = c(quantile(exp(yyDL), 0.025), quantile(exp(yyHalfDL), 0.025),
quantile(exp(yyZero), 0.025), quantile(exp(yyLowTobit), 0.025)),
Upper_ClI = c(quantile(exp(yyDL), 0.975), quantile(exp(yyHalfDL), 0.975),
quantile(exp(yyZero), 0.975), quantile(exp(yyHighTobit), 0.975)) )

# Print the summary table
cat("Summary Table for", st, "\n")
print(summary_table)

# Save the table to a CSV file
write.csv(summary_table, file = pasteO(outPrefix, " _summary_table.csv"),
row.names = FALSE)

pdf(paste(sep="",outPrefix,"_fits.pdf"),width=16,height=9)
# Calculate dynamic y-axis limits

y_axis_min <- min(datGeoM$geoM_better, na.rm = TRUE)
y_axis_max <- max(datGeoM$geoM_better, na.rm = TRUE)

# Calculate dynamic x-axis limits
X_axis_min <- min(datGeoM$ageCatNum, na.rm = TRUE)
X_axis_max <- max(datGeoM$ageCatNum, na.rm = TRUE)

# Plot the graph with dynamic axis limits

plot(datGeoM$ageCatNum, datGeoM$geoM_better, log = "y", xlab = "age
(months)”, ylab = paste(sep = ", "Serotype ", st, " IgG concentration"), pch = 20,
xlim = ¢(x_axis_min, X_axis_max), ylim = c(y_axis_min, y_axis_max), cex = 2)

#plot(datGeoM$ageCatNum,datGeoM$geoM_better,log="y" ,xlab="age
(months)",ylab=paste(sep="","
concentration"),pch=20,ylim=c(DL,max(dat[,varNamelmpDL],na.rm=T)), cex=2)

points(dat$ageMonths,dat[,varNamelmpDL],col=rgh(red=0,green=0,blue=0,alpha=50
,maxColorValue=255))

lines(xx,exp(yyDL),col="red",lwd=1.5)
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polygon(x=c(xx,xx[length(xx):1]),y=c(exp(yyDLLow),exp(yyDLHigh)[length(xx):1]
),col=rgb(red=255,green=0,blue=0,alpha=50,maxColorValue=255),border=NA)

lines(xx,exp(yyHalfDL),col="orange",Iwd=1.5)

polygon(x=c(xx,xx[length(xx):1]),y=c(exp(yyHalfDLLow),exp(yyHalfDLHigh)[lengt
h(xx):1]),col=rgb(red=255,green=165,blue=0,alpha=50,maxColorValue=255),border
=NA)

lines(xx,exp(yyZero),col="blue",lwd=1.5)

polygon(x=c(xx,xx[length(xx):1]),y=c(exp(yyZeroLow),exp(yyZeroHigh)[length(xx):
1]),col=rgb(red=0,green=0,blue=255,alpha=50,maxColorValue=255),border=NA)

lines(xx,exp(yyTobit),lwd=1.5,col="black")
xx<-seq(0.1,60,length=200)

polygon(x=c(xx,xx[length(xx):1]),y=c(exp(yyLowTobit),exp(yyHighTobit)[length(xx
):1]),col=rgb(red=0,green=0,blue=0,alpha=50,maxColorValue=255),border=NA)

# par(xpd=T)

#lgd <- legend("topleft"”, legend = c("data", "geometric mean per age band"), pch =
¢(1,20), bty="n",
col=c(rgb(red=0,green=0,blue=0,alpha=50,maxColorValue=255),"black"),pt.cex=c(1,
2),inset=c(0,-0.10))

#legend(lgd$rect$left+lgd$rectdw, 5*(Igd$rect$top), legend = c("model fit", “95%
ClI (model fit)"), lwd=c(2,2),
bty="n",col=c("red",rgb(red=255,green=190,blue=190,maxColorValue=255))) # can't
have transparent colors in the legend when in the margin; hence approximating the
transparent red and gray...

#par(xpd=F)

dev.off()
return(list=I1s())

#return(list=list(modLinear=modLinear,modTobit=modTobit,bootResults=Results)) }
# running serotype 23F

serotypes<-
c("1","3", 4" "5 "6 A", 6B " TF", "9V, "14" "18C", "19A ", "19F ", "23F ", "33F")
fits<-list()
for(st in serotypes){
print(st)
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fits[[st]]<-
doAnalysis(dat=dat,st=st,varNameQOrig=paste(sep="","res",st),varNameNum=paste(se
p="","res",st,"_num"),varNamelmpDL=paste(sep="","res",st,”_num_ImpDL"),varNa
melmpHalfDL=paste(sep="","res",st,"_num_ImpHalfDL"),varNamelmpZero
=paste(sep="","res",st,”_num_ImpZero"),outPrefix=paste(sep="","../output/serotype”,

st),DL=0.15)}

DATA SIMULATION

rm(list=1s())

#MscProject starts here

# libraries (put any libraries that you need to load here)
library(gtools)

data(ELISA)

#print(ELISA)

#Changing the whole script into function

simData<-function(seed, np=100, ns=5, pExp=0.4, dI=0.15){

# set a random seed; this can be any number; it's just so you can reproduce it at a later
stage

#seed<-15*3+2019

#print(seed)

set.seed(seed)

#set overall parameters (add more as needed) (since the parameters are in simdata
function the rest have changed them to comment)

#np<-100 # number of participants for which samples are analysed

# ns<-5 # number of samples per participant

# pExp<-0.4 # probability for a randomly selected participant to have been exposed to
the pathogen (I assume the 3 antibodies are related to this pathogen)

# dI<-0.15 # detection limit (assume same one for all markers)

# set up data frames
simDatPatients<-data.frame(
patientID=paste(sep="","p",1:np),
exposed=NA,
exposedDate=NA,
gender=NA,
age=NA,
random1=NA,
random2=NA,
random3=NA)
#print(simDatPatients)

tmp<-expand.grid(1:ns,1:np)
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simDatSamples<-data.frame(

patientID=paste(sep="","p",tmp[,2]),

samplelD=paste(sep="","p",tmp[,2],"_s",tmp[,1]),

visit=tmp[,1],

exposed=NA,

exposedDate=NA,

gender=NA,

random1=NA,

random2=NA,

random3=NA,

age=NA,

ac1=NA, # actual average concentration for antibies 1-3

ac2=NA,

ac3=NA,

c1=NA, # actual concentrations for antibodies 1-3

c2=NA,

c3=NA,

0d1=NA, # perfectly backtransformed optical densities

0d2=NA,

0d3=NA,

mod1=NA, # measured optical densities for antibodies 1-3 (od1, od2, od3 with
noise)

mod2=NA,

mod3=NA,

mc1=NA, # measured concentrations for antibodies 1-3; this is calculated, not
simulated from the optical densities; this is what researchers would do to convert OD
into concentrations; you will need to choose some of your samples to be standards of
known cocentration.

mc2=NA,

mc3=NA
)

rm(tmp)

#print(simDatSamples)

#simulate gender

simDatPatients$gender<-
factor(sample(x=c("male","female"),size=nrow(simDatPatients),replace=T))

simDatSamples$gender<-
simDatPatients$gender[match(simDatSamples$patientID,simDatPatients$patientID)]

#simulate age
simDatPatients$age<-rgamma(nrow(simDatPatients),shape=8,rate=1)
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simDatSamples$age<-
simDatPatients$age[match(simDatSamples$patientID,simDatPatients$patientID)]+si
mDatSamples$visit

# simulate exposure status - have participants been exposed to the pathogen (i.e.
should have had an immune response that led to antibodies being present)
simDatPatients$exposed<-sample(x=0:1,size=np,replace=T,prob=c(1-pExp,pEXxp))
simDatPatients$exposedDate<-
ifelse(simDatPatients$exposed==0,0,sample(x=1:ns,size=nrow(simDatPatients),repla
ce=T))
simDatSamples$exposedDate<-
simDatPatients$exposedDate[match(simDatSamples$patientID,simDatPatients$patie
ntID)]
for(i in L:np){
idxS<-which(simDatSamples$patientiD==paste(sep="","p",i))
idxP<-which(simDatPatients$patientiD==paste(sep="","p",i))
simDatSamples$exposed[idxS]<-ifelse(simDatPatients$exposed[idxP]==1 &
simDatSamples$visit[idxS]>=simDatPatients$exposedDate[idxP],1,0)}

# simulate random patient effect

simDatPatients$random1<-rnorm(np,mean=0,sd=1)
simDatPatients$random2<-rnorm(np,mean=0,sd=1)
simDatPatients$random3<-rnorm(np,mean=0,sd=1)

simDatSamples$random1<-
simDatPatients$random1[match(simDatSamples$patientID,simDatPatients$patientID
)]

simDatSamples$random2<-
simDatPatients$random2[match(simDatSamples$patientID,simDatPatients$patient|D
)]

simDatSamples$random3<-
simDatPatients$random3[match(simDatSamples$patientID,simDatPatients$patient|D

)]

# simulate concentration data for exposed and unexposed
logistic4Param<-function(x,a=1,b=1,c=1,d=5){
res<-d+(a-d)/(1+(x/c)"b)
return(res)}
# for cl

maleOffset<-2.5
changePerYear<-0.1

exposurelncrease<-1

simDatSamples$acl<-
ifelse(simDatSamples$gender=="male",maleOffset,0)+simDatSamples$age*changeP
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erYear+simDatSamples$exposed*exposurelncrease+rexp(nrow(simDatSamples),rate
=0.5)+simDatSamples$random1
simDatSamples$acl[simDatSamples$ac1<0]<-0

simDatSamples$cl<-(simDatSamples$acl+rexp(nrow(simDatSamples),rate=0.75))/1
simDatSamples$c1[simDatSamples$c1<0]<-0

#for c2

maleOffset<-1.7
changePerYear<-0.5
exposurelncrease<-2.5

simDatSamples$ac2<-
ifelse(simDatSamples$gender=="male",maleOffset,0)+simDatSamples$age*changeP
erYear+simDatSamples$exposed*exposurelncrease+rexp(nrow(simDatSamples),
rate=0.3)+simDatSamples$random2

simDatSamples$ac2[simDatSamples$ac2<0]<-0

simDatSamples$c2<-(simDatSamples$ac2+rexp(nrow(simDatSamples),rate=1))/2
simDatSamples$c2[simDatSamples$c2<0]<-0

#for c3

maleOffset<-0.6
changePerYear<-0.25
exposurelncrease<-5

simDatSamples$ac3<-
ifelse(simDatSamples$gender=="male",maleOffset,0)+simDatSamples$age*changeP
erYear+simDatSamples$exposed*exposurelncrease+rexp(nrow(simDatSamples),rate
=0.75)+simDatSamples$random3

simDatSamples$ac3[simDatSamples$ac3<0]<-0

simDatSamples$c3<-(simDatSamples$ac3+rexp(nrow(simDatSamples),rate=0.4))/2
simDatSamples$c3[simDatSamples$c1<0]<-0

#print(simDatSamples)
# simulate optical densities from the concentrations

inverse.logistic4Param<-function(x,a,b,c,d){
res<-c*((a-d)/(x-d) - 1)(1/b)
return(res)}

# add standards of known concentration (adds rows)
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stds<-data.frame(

patientlD=paste(sep="","std",1:5),

samplelD=paste(sep="","std",1:5),

Visit=NA,

exposed=NA,

exposedDate=NA,

gender=NA,

random1=NA,

random2=NA,

random3=NA,

age=NA,

acl=NA,

cl=c(5,12.5,18,20,30),

ac2=NA,

c2=c(6,9,12,15,27),

ac3=NA,

c3=c(4,8,12,20,35),

0d1=NA,

0d2=NA,

0d3=NA,

mod1=NA,

mod2=NA,

mod3=NA,

mcl=NA,

mc2=NA,

mc3=NA)
simDatSamples<-rbind(simDatSamples,stds)

# going from concentration to OD

# For od1 and mod1

# x<-seq(0,40,length=100)

# y<-inverse.logistic4Param(x,a=2,b=1,c=0.5,d=40) # default values

# y2<-inverse.logistic4Param(x,a=0.1,b=1,c=0.5,d=40) # changing a

# y3<-inverse.logistic4Param(x,a=1,b=2,c=0.5,d=40) # changing b

# y4<-inverse.logistic4Param(x,a=1,b=1,c=2,d=40) # changing c

# yFinal<-inverse.logistic4Param(x,a=0.2,b=1.5,c=1,d=40) # changing d
# plot(x,y,type="1",ylim=c(0,5)) # specify ylim=c(0,20) if you want to restrict the
range shown on the y axis to [0,20]

# abline(h=dl,lty=2)

# lines(x,y2,col="red")

# lines(x,y3,col="blue")

# lines(x,y4,col="green")

# lines(x,yFinal,col="orange",lwd=2)

72



simDatSamples$odl<-inverse.logistic4Param(simDatSamples$c1,
a=0.2,b=1.5,c=1,d=40)

simDatSamples$mod1<-simDatSamples$od1+rnorm(nrow(simDatSamples),sd=0.01)
simDatSamples$mod1[simDatSamples$mod1<0]<-0

#sum(is.na(simDatSamples$od1))

#For od2 and mod2

# For 0d2 and mod2

# x<-seq(0,35,length=100)

# y<-inverse.logistic4Param(x,a=2,b=1,c¢=0.5,d=35) # default values

# y2<-inverse.logistic4Param(x,a=0.1,b=1,c=0.5,d=35) # changing a

# y3<-inverse.logistic4Param(x,a=1,b=2,c=0.5,d=35) # changing b

# y4<-inverse.logistic4Param(x,a=1,b=1,c=2,d=35) # changing ¢

# yFinal<-inverse.logistic4Param(x,a=0,b=1,c=1.7,d=35) # changing d
# plot(x,y,type="1",ylim=c(0,5)) # specify ylim=c(0,20) if you want to restrict the
range shown on the y axis to [0,20]

# abline(h=dl,Ity=2)

# lines(x,y2,col="red")

# lines(x,y3,col="blue")

# lines(x,y4,col="green")

# lines(x,yFinal,col="orange",Iwd=2)

simDatSamples$od2<-inverse.logistic4Param(simDatSamples$c2,
a=0,b=1,c=1.7,d=35)

simDatSamples$mod2<-
simDatSamples$od2+rnorm(nrow(simDatSamples),sd=0.005)
simDatSamples$mod2[simDatSamples$mod2<0]<-0

#simDatSamples$mod2<-
rinorm(nrow(simDatSamples),mean=simDatSamples$od2,sd=0.5)

#For 0d3 and mod3

# For od3 and mod3

# x<-se((0,50,length=100)

# y<-inverse.logistic4Param(x,a=2,b=1,c=0.5,d=50) # default values

# y2<-inverse.logistic4Param(x,a=0.1,b=1,c=0.5,d=50) # changing a

# y3<-inverse.logistic4Param(x,a=1,b=2,c¢=0.5,d=50) # changing b

# y4<-inverse.logistic4Param(x,a=1,b=1,c=2,d=50) # changing ¢

# yFinal<-inverse.logistic4Param(x,a=0.2,b=1.5,c¢=1.5,d=50) # changing d
# plot(x,y,type="1",ylim=c(0,5)) # specify ylim=c(0,20) if you want to restrict the
range shown on the y axis to [0,20]

# abline(h=dl,lty=2)
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# lines(x,y2,col="red")

# lines(x,y3,col="blue™)

# lines(x,y4,col="green")

# lines(x,yFinal,col="orange",Iwd=2)

simDatSamples$od3<-inverse.logistic4Param(simDatSamples$c3,
a=0.2,b=1.5,c=1.25,d=50)

simDatSamples$mod3<-simDatSamples$od3+rnorm(nrow(simDatSamples),sd=0.02)
simDatSamples$mod3[simDatSamples$mod3<0]<-0

#sum(is.na(simDatSamples$mod3))
#hist(simDatSamples$mod1,breaks=50)

#simDatSamples$mod3<-
rinorm(nrow(simDatSamples),mean=simDatSamples$0d3,sd=0.5)

#print(simDatSamples)

# derive (or set) limits of detection and quantification; replace all ODs below the
LOQs by "< LOQ" or some impossble values such as "-9"

simDatSamples$mod1[simDatSamples$modl<dl]<-NA
#sum(is.na(simDatSamples$mod1l))/nrow(simDatSamples) # check the proportion of
missing values; aim for ~4-6% for one of mod1, mod2, mod3, ~10-15% for another
and ~25-30% for another

simDatSamples$mod2[simDatSamples$mod2<dl]<-NA
#sum(is.na(simDatSamples$mod?2))/nrow(simDatSamples) # check the proportion of
missing values; aim for ~4-6% for one of mod1, mod2, mod3, ~10-15% for another
and ~25-30% for another

simDatSamples$mod3[simDatSamples$mod3<dl]<-NA
#sum(is.na(simDatSamples$mod3))/nrow(simDatSamples) # check the proportion of
missing values; aim for ~4-6% for one of mod1, mod2, mod3, ~10-15% for another
and ~25-30% for another

#print(simDatSamples)

# going from od to measured concentration: (i) use least squares to estimate values for
a, b, ¢, d, (i) use the estimated parameters to obtain mc1, mc2, mc3

idxStds<-grep(simDatSamples$patientID,pattern="std")

ssFun<-function(pars,c,mod){
res<-sum( (c - logistic4Param(mod,a=pars[1],b=pars[2],c=pars[3],d=pars[4]))"2 )
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res}

parsCl<-
optim(par=c(0,1,1,40),fn=ssFun,c=simDatSamples$c1[idxStds],mod=simDatSamples
$mod1[idxStds])

simDatSamples$mc1<-logistic4Param(simDatSamples$mody1,
a=parsC1$par[1],b=parsC1$par[2],c=parsC1$par[3],d=parsC1$par[4])
dIMcl<-logistic4Param(dl,
a=parsC1$par[1],b=parsC1$par[2],c=parsC1$par[3],d=parsC1l$par[4])

parsC2<-
optim(par=c(0,1,1,35),fn=ssFun,c=simDatSamples$c2[idxStds],mod=simDatSamples
$mod2[idxStds])

simDatSamples$mc2<-logistic4Param(simDatSamples$mod2,
a=parsC2$par[1],b=parsC2$par[2],c=parsC2$par[3],d=parsC2$par[4])
dIMc2<-logistic4Param(dl,
a=parsC23$par[1],b=parsC2$par[2],c=parsC2$par[3],d=parsC2$par[4])

parsC3<-
optim(par=c(0,1,1,50),fn=ssFun,c=simDatSamples$c3[idxStds],mod=simDatSamples
$mod3[idxStds])

simDatSamples$mc3<-logistic4Param(simDatSamples$mod3,
a=parsC33par[1],b=parsC3$par[2],c=parsC3$par[3],d=parsC3$par[4])
dIMc3<-logistic4Param(dl,
a=parsC33par[1],b=parsC3$par[2],c=parsC3$par[3],d=parsC3$par[4])

# remove the standards
simDatSamples<-simDatSamples[-idxStds,]

# preview the data
#print(simDatSamples)

# save the data
#save(list=c("simDatSamples","dIMc1","dIMc2","dIMc3"),file="/Users/HP/Desktop/
Literatureforsusanne/Msc project/data/simDat20201022.RData™)

# Calculate the proportion of missing data for mod1

prop_missing_mod1 <- sum(is.na(simDatSamples$mod1))/nrow(simDatSamples)

# Calculate the proportion of missing data for mod2
prop_missing_mod?2 <- sum(is.na(simDatSamples$mod?2))/nrow(simDatSamples)

# Calculate the proportion of missing data for mod3
prop_missing_mod3 <- sum(is.na(simDatSamples$mod3))/nrow(simDatSamples)

# Print the results
cat("Proportion of missing data for mod1:", prop_missing_mod1, "\n")
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cat("Proportion of missing data for mod2:", prop_missing_mod2, "\n")
cat("Proportion of missing data for mod3:", prop_missing_mod3, "\n")
print(results)

#return(simDatSamples)

return(list(simDatSamples=simDatSamples,
diMc1=dIMc1,
diMc2=dIMc2,dIMc3=dIMc3))}

DATA SIMULATION ANALYSIS
rm(list=1s())

source("c:/Users/DELL/Desktop/Susanne Barnaba
BACKUP/Literatureforsusanne/Msc
project/Scripts/Sue_DataSimulation_M_MHFinal.R")
results<-list()

B<-1e3

# helper functions
geoMean<-function(x,na.rm=T){
return(exp(sum(log(x[x > 0]), na.rm=na.rm) / length(x)))}

geoMeanCensoring<-function(x,left=0,right=Inf){
# will return an error message if no censoring in the data
require(censReq)
return(exp(coef(censReg(log(x)~1,left=log(left),right=log(right)))["(Intercept)"])) }

library(Ime4)
#library(ImerTest)
library(censReg)
library(VGAM)
library(boot)
library(GGally)
library(tidyverse)
library(plm)
library(Matrix)

singularModels<-
data.frame(j=integer(0),model=character(0))

for(j in 1:B){

#print(j)

simDat<-simData(np=100, ns=5, pExp=0.4, dI=0.15, seed=j)
simDatSamples<-simDat$simDatSamples
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dIMcl<-simDat$dIMcl
diMc2<-simDat$dIMc2
dIiMc3<-simDat$dIMc3

idxMcl<-which(is.na(simDatSamples$mc1l))
idxMc2<-which(is.na(simDatSamples$mc2))
idxMc3<-which(is.na(simDatSamples$mc3))

simDatSamples$mc1[idxMc1]<-dIMcl

simDatSamples$mc2[idxMc2]<-dIMc2

simDatSamples$mc3[idxMc3]<-dIMc3

#fit a linear longitudinal mixed model to all the three biomakers to DL
fm1_DL<-Imer(mcl~age+exposed+gender+ (1|patientlD), data = simDatSamples)

if(isSingular(fm1_DL)){singularModels<-rbind(singularModels,
data.frame(j=j,model="fm1_DL"))}

#summary(fm1l _DL)

fm2_DL<-Imer(mc2~age+exposed+gender+ (1|patientlD), data = simDatSamples)
if(isSingular(fm2_DL)){singularModels<-rbind(singularModels,
data.frame(j=j,model="fm2_DL"))}

#summary(fm2_DL)

fm3_DL<-Imer(mc3~age+exposed+ gender + (1|patientID), data = simDatSamples)

if(isSingular(fm3_DL)){singularModels<-rbind(singularModels,
data.frame(j=j,model="fm3_DL"))}

#summary(fm3_DL)

simDatSamples$mc1[idxMc1l]<-dIMc1/2

simDatSamples$mc2[idxMc2]<-dIMc2/2

simDatSamples$mc3[idxMc3]<-dIMc3/2

#fit a linear longitudinal mixed model to all the three biomakers to DL/2
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fm1_halfDL<-Imer(mcl~age+exposed +gender+ (1|patientID), data =
simDatSamples)
if(isSingular(fm2_halfDL)){singularModels<-rbind(singularModels,
data.frame(j=j,model="fm1_halfDL"))}

#summary(fml1_halfDL)

fm2_halfDL<-Imer(mc2~age+exposed+gender +(1|patientID), data =
simDatSamples)
if(isSingular(fm2_halfDL)){singularModels<-rbind(singularModels,
data.frame(j=j,model="fm2_halfDL"))}

#summary(fm2_halfDL)
fm3_halfDL<-Imer(mc3~age+exposed+gender+(1|patientID), data =
simDatSamples)

if(isSingular(fm3_halfDL)){singularModels<-rbind(singularModels,
data.frame(j=j,model="fm3_halfDL"))}

#summary(fm3_halfDL)

simDatSamples$mc1[idxMc1]<-0

simDatSamples$mc2[idxMc2]<-0

simDatSamples$mc3[idxMc3]<-0

#fit a linear longitudinal mixed model to all the three biomakers to zero

fm1_zero<-Imer(mcl~age+exposed +gender+ (1|patientlD), data = simDatSamples)

if(isSingular(fm1_zero)){singularModels<-rbind(singularModels,
data.frame(j=j,model="fm1_zero™))}

#summary(fml_zero)

fm2_zero<-Imer(mc2~age+exposed+gender+(1|patientID), data = simDatSamples)

if(isSingular(fm2_zero)){singularModels<-rbind(singularModels,

data.frame(j=j,model="fm2_zero"))}

#summary(fm2_zero)
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fm3_zero<-Imer(mc3~age+exposed+gender+(1|patientID), data = simDatSamples)
if(isSingular(fm3_zero)){singularModels<-rbind(singularModels,
data.frame(j=j,model="fm3_zero™))}

#summary(fm3_zero)
#fit a longitudinal mixed model to all the three biomakers to NA

simDatSamples$mc1[idxMcl]<-NA
simDatSamples$mc2[idxMc2]<-NA
simDatSamples$mc3[idxMc3]<-NA

fm1_NA<-Imer(mcl~age+exposed +gender+ (1|patientID), data = simDatSamples)
if(isSingular(fm1_NA)){singularModels<-rbind(singularModels,
data.frame(j=j,model="fm1_NA"))}

#summary(fm1l_NA)

fm2_NA<-Imer(mc2~age+exposed+gender+(1|patientID), data = simDatSamples)
if(isSingular(fm2_NA)){singularModels<-rbind(singularModels,
data.frame(j=j,model="fm2_NA"))}

#summary(fm2_NA)

fm3_NA<-Imer(mc3~age+exposed+gender+(1|patientID), data = simDatSamples)
if(isSingular(fm3_NA)){singularModels<-rbind(singularModels,
data.frame(j=j,model="fm3_NA"))}

#summary(fm3_NA)
#fit a censored longitudinal mixed model to all the three biomakers

simDatSamples$mc1[idxMc1]<-dIMcl
simDatSamples$mc2[idxMc2]<-dIMc2
simDatSamples$mc3[idxMc3]<-dIMc3

simDatSamples<-pdata.frame(simDatSamples, c("patientID", "visit™))

fml C<-censReg(mcl~age+exposed +gender, data = simDatSamples, method
="BHHH", left=dIMc1)

#isSingular(fm1_C)

#summary(fml_C)
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fm2_C<-censReg(mc2~age+exposed+gender, data = simDatSamples, method
="BHHH", left=dIMc2)

#isSingular(fm2_C)

#summary(fm2_C)

fm3_C<-censReg(mc3~age+exposed+gender, data = simDatSamples, method
="BHHH", left=dIMc3)

#isSingular(fm3_C)
#summary(fm3_C)

resultsTable<-
data.frame(intercept=numeric(15),interceptSE=numeric(15),
age=numeric(15),ageSE=numeric(15),
exposed=numeric(15), exposedSE=numeric(15),
gender=numeric(15), genderSE=numeric(15))
rownames(resultsTable)<-c(paste(sep="","DL_",1:3),
paste(sep="","halfDL_",1:3),
paste(sep="","Zero_",1:3),
paste(sep="","NA_",1:3),
paste(sep="","C_",1:3))

resultsTable["DL_1"]<-
as.vector(matrix(byrow=T,nrow=2,as.vector(summary(fm1_DL)$coefficients[,1:2])))
resultsTable["DL_2"]<-
as.vector(matrix(byrow=T,nrow=2,as.vector(summary(fm2_DL)$coefficients[,1:2])))
resultsTable["DL_3"]<-
as.vector(matrix(byrow=T,nrow=2,as.vector(summary(fm3_DL)$coefficients[,1:2])))
resultsTable["halfDL_1"]<-
as.vector(matrix(byrow=T,nrow=2,as.vector(summary(fm1_halfDL)$coefficients[,1:2
)

resultsTable["halfDL_2"]<-
as.vector(matrix(byrow=T,nrow=2,as.vector(summary(fm2_halfDL)$coefficients[,1:2
)

resultsTable["halfDL_3",]<-
as.vector(matrix(byrow=T,nrow=2,as.vector(summary(fm3_halfDL)$coefficients[,1:2
D))

resultsTable["Zero_1"]<-
as.vector(matrix(byrow=T,nrow=2,as.vector(summary(fml_zero)$coefficients[,1:2]))
)

resultsTable["Zero_ 2" ]<-
as.vector(matrix(byrow=T,nrow=2,as.vector(summary(fm2_zero)$coefficients[,1:2]))
resultsTable["Zero_3"]<-
as.vector(matrix(byrow=T,nrow=2,as.vector(summary(fm3_zero)$coefficients[,1:2]))
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resultsTable["NA_1"]<-
as.vector(matrix(byrow=T,nrow=2,as.vector(summary(fm1_NA)S$coefficients[,1:2])))
resultsTable["NA_2"]<-
as.vector(matrix(byrow=T,nrow=2,as.vector(summary(fm2_NA)S$coefficients[,1:2])))
resultsTable["NA_3",]<-
as.vector(matrix(byrow=T,nrow=2,as.vector(summary(fm3_NA)$coefficients[,1:2])))
resultsTable["C_1",]<-
as.vector(matrix(byrow=T,nrow=2,as.vector(summary(fm1l_C)$estimate[1:4,1:2])))
resultsTable["C_2",]<-
as.vector(matrix(byrow=T,nrow=2,as.vector(summary(fm2_C)$estimate[1:4,1:2])))
resultsTable["C_3",]<-
as.vector(matrix(byrow=T,nrow=2,as.vector(summary(fm3_C)$estimate[1:4,1:2])))

results[[j]]<-resultsTable

}resultsMean <- matrix(NA, nrow=nrow(results[[1]]), ncol=ncol(results[[1]]))
rownames(resultsMean)<-rownames(results[[1]])
colnames(resultsMean)<-colnames(results[[1]])

resultsMedian <- resultsMean

resultsquantiles25<-resultsMean

resultsquantiles75<-resultsMean

resultsStandarddeviation<-resultsMean

resultsquantiles2.5<-resultsMean

resultsquantiles97.5<-resultsMean

for(l in L:nrow(results[[1]])){
for(m in 1:ncol(results[[1]])){
resultsMean[l, m] <- mean(unlist(lapply(results, [, i =I, j = m)))
resultsMedian[l, m] <- median(unlist(lapply(results, '[", i =I, j = m)))
resultsquantiles25[l, m]<-quantile(probs=0.25,unlist(lapply(results, [, i =I, j =
m)))
resultsquantiles75[l, m]<-quantile(probs=0.75,unlist(lapply(results, [, i =I, j =
m)))
resultsStandarddeviation[l, m] <- sd(unlist(lapply(results, '[*, i =I, j = m)))
resultsquantiles2.5[l, m]<-quantile(probs=0.025,unlist(lapply(results, [, i =l, ] =
m)))
resultsquantiles97.5[l, m]<-quantile(probs=0.975,unlist(lapply(results, [, i =Il,j =
m)))}}

# resultsTable
# To Create a forest plot

library(ggplot2)
library(gridExtra)

81



#with intercept Mc1, Mc2, Mc3

#Mcl
modNames<-c("DL","C","Zero","NA","halfDL")
markerName<-"1"

parName<-"intercept"

trueMclintercept<-3.33

# Create a data frame with the mean, lower, and upper values of the coefficients
coeffs <- data.frame(
modNames=c("Detection Limit","Half Detection Limit","Zero","Complete
Observations","Censored"),
mean=c(resultsMean[paste(sep="_",modNames,markerName),parName]),
lower=c(resultsquantiles2.5[paste(sep="_",modNames,markerName),parName]),
upper=c(resultsquantiles97.5[paste(sep="_",modNames,markerName),parName]) )

# Use the data frame to create the table for intercept
resultsTable <- coeffs

resultsTable

# Use the data frame to create the graph
df <- coeffs
Mclintercept<- ggplot(data=df, aes(y=modNames, x=mean, xmin=lower,
Xmax=upper))+
geom_point()+
geom_errorbarh(height=.1)+
geom_vline(xintercept = trueMclIntercept,lty=2,Ilwd=1.25, col="darkgrey") +
labs(title="Intercept", x="Coefficient values"y = ")+
geom_vline(xintercept =0, color = "black", linetype = "dashed", alpha=.5)+
theme_classic()

#This section will be removed

#df<-data.frame(

#modNames=c("Detection Limit","Half Detection Limit","Zero","Complete
Observations","Censored"),

#df$modNames2<-relevel(x=factor(df$modNames),ref = "truth"),
#mean=c(resultsMean[paste(sep="_",modNames,markerName),parName]),

#lower=c(resultsquantiles2.5[paste(sep="_",modNames,markerName),parName]),

#upper=c(resultsquantiles97.5[paste(sep="_",modNames,markerName),parName])

#)
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#png("myGraphmcll.png”,width=16,height=9,units="cm",res=300)
#df$modNames<-factor(df$modNames, levels = df$modNames)
#ggplot(data=df, aes(y=modNames, x=mean, xmin=lower,
# Xmax=upper))+
#geom_point()+
#geom_errorbarh(height=.1)+
#geom_vline(xintercept = trueMclIntercept,lty=2,Iwd=1.25, col="darkgrey") +
#scale_y discrete(name ="", breaks=1:nrow(df),labels=df$Mc1)+
#labs(title="Effect of Intercept", x="Coefficient values",y = "")+
#geom_vline(xintercept =0, color = "black", linetype = "dashed", alpha=.5)+
#theme_classic()

#dev.off()

#Mc2

modNames<-c("DL","halfDL","Zero","NA","C")
markerName<-"2"

parName<-"intercept"

trueMc2Intercept<-2.17

# Create a data frame with the mean, lower, and upper values of the coefficients
coeffs <- data.frame(
modNames=c("Detection Limit","Half Detection Limit","Zero","Complete
Observations","Censored"),
mean=c(resultsMean[paste(sep="_",modNames,markerName),parName]),
lower=c(resultsquantiles2.5[paste(sep="_",modNames,markerName),parName]),
upper=c(resultsquantiles97.5[paste(sep="_",modNames,markerName),parName]))

# Use the data frame to create the table for intercept
resultsTable <- coeffs

resultsTable

# Use the data frame to create the graph
df <- coeffs
Mc2lIntercept<- ggplot(data=df, aes(y=modNames, x=mean, xmin=lower,
Xmax=upper))+
geom_point()+
geom_errorbarh(height=.1)+
geom_vline(xintercept = trueMc2lIntercept,lty=2,Ilwd=1.25, col="darkgrey") +
labs(title="Intercept", x="Coefficient values",y = "")+
geom_vline(xintercept =0, color = "black", linetype = "dashed", alpha= .5)+
theme_classic()
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#df<-data.frame(
#modNames=c("Detection Limit","Half Detection Limit","Zero","Complete
Observations","Censored"),

#mean=c(resultsMean[paste(sep="_",modNames,markerName),parName]),
#lower=c(resultsquantiles2.5[paste(sep="_",modNames,markerName),parName]),
#upper=c(resultsquantiles97.5[paste(sep="_",modNames,markerName),parName])

#)

#png("myGraphmc2l.png"”,width=16,height=9,units="cm",res=300)

#Mc2intercept = ggplot(data=df, aes(y=modNames, x=mean, xmin=lower,

# Xmax=upper))+

# geom_point()+

# geom_errorbarh(height=.1)+

# geom_vline(xintercept = trueMc2lIntercept,lty=2,lwd=1.25, col="darkgrey") +
# scale_y discrete(name ="", breaks=1:nrow(df),labels=df$Mc2)+

# labs(title="Effect of Intercept”, x="Coefficient values",y = ")
#geom_vline(xintercept =0, color = "black™, linetype = "dashed", alpha=.5)+
#theme_classic()

#dev.off()

#Mc3
modNames<-c("DL","halfDL","Zero","NA","C")
markerName<-"3"

parName<-"intercept"

trueMc3Intercept<-1.92

# Create a data frame with the mean, lower, and upper values of the coefficients
coeffs <- data.frame(
modNames=c("Detection Limit","Half Detection Limit","Zero","Complete
Observations","Censored"),
mean=c(resultsMean[paste(sep="_",modNames,markerName),parName]),
lower=c(resultsquantiles2.5[paste(sep="_",modNames,markerName),parName]),
upper=c(resultsquantiles97.5[paste(sep="_",modNames,markerName),parName]))

# Use the data frame to create the table for intercept
resultsTable <- coeffs

resultsTable

# Use the data frame to create the graph
df <- coeffs
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Mc3Intercept<- ggplot(data=df, aes(y=modNames, x=mean, xmin=lower,
Xmax=upper))+
geom_point()+
geom_errorbarh(height=.1)+
geom_vline(xintercept = trueMc3Intercept,Ity=2,Ilwd=1.25, col="darkgrey") +
labs(title="Intercept”, x="Coefficient values")y = ")+
geom_vline(xintercept =0, color = "black", linetype = "dashed", alpha=.5)+
theme_classic()

# Below it has to be removed except

#df<-data.frame(

# modNames=c("DL","Half DL","Zero","Complete Observations","Censored"),

#

#

# mean=c(resultsMean[paste(sep="_",modNames,markerName),parName]),

# lower=c(resultsquantiles2.5[paste(sep="_",modNames,markerName),parName]),
# upper=c(resultsquantiles97.5[paste(sep="_",modNames,markerName),parName])

#)

#png("myGraphmc3l.png",width=16,height=9,units="cm",res=300)

#Mc3intercept = ggplot(data=df, aes(y=modNames, x=mean, xmin=lower,

# Xmax=upper))+

# geom_point()+

# geom_errorbarh(height=.1)+

# geom_vline(xintercept = trueMc3lIntercept,lty=2,lwd=1.25, col="darkgrey") +
# scale_y discrete(name ="", breaks=1:nrow(df),labels=df$Mc3)+

# labs(title="Effect of Intercept”, x="Coefficient values")y = "")
#geom_vline(xintercept =0, color = "black", linetype = "dashed", alpha=.5)+
#theme_classic()

#dev.off()

#with gender Mc1, Mc2, Mc3

#Mcl
modNames<-c("DL","halfDL","Zero","NA","C")
markerName<-"1"

parName<-"gender"

trueMclgender<-2.5

# Create a data frame with the mean, lower, and upper values of the coefficients
coeffs <- data.frame(

85



modNames=c("Detection Limit","Half Detection Limit","Zero","Complete
Observations","Censored"),
mean=c(resultsMean[paste(sep="_",modNames,markerName),parName]),
lower=c(resultsquantiles2.5[paste(sep="_",modNames,markerName),parName]),
upper=c(resultsquantiles97.5[paste(sep="_",modNames,markerName),parName]))

# Use the data frame to create the table for intercept
resultsTable <- coeffs

resultsTable

# Use the data frame to create the graph
df <- coeffs
Mclgender<- ggplot(data=df, aes(y=modNames, x=mean, xmin=lower,
Xmax=upper))+
geom_point()+
geom_errorbarh(height=.1)+
geom_vline(xintercept = trueMclgender,lty=2,Iwd=1.25, col="darkgrey") +
labs(title="Effect of Sex", x="Coefficient values",y = "")+
geom_vline(xintercept =0, color = "black™, linetype = "dashed", alpha=.5)+
theme_classic()

# df<-data.frame(
# modNames=c("DL","Half DL","Zero","Complete Observations","Censored"),

#df$modNames2<-relevel(x=factor(df$modNames),ref = "truth"),
# mean=c(resultsMean[paste(sep="_",modNames,markerName),parName]),
# lower=c(resultsquantiles2.5[paste(sep="_",modNames,markerName),parName]),
# upper=c(resultsquantiles97.5[paste(sep="_",modNames,markerName),parName])
#
#)

#png("myGraphmclG.png", width=16,height=9,units="cm",res=300)

#Mclgender = ggplot(data=df, aes(y=modNames, x=mean, xmin=lower,

# Xmax=upper))+

# geom_point()+

# geom_errorbarh(height=.1)+

# geom_vline(xintercept = trueMclgender,lty=2,lwd=1.25, col="darkgrey") +
#scale_y discrete(name ="", breaks=1:nrow(df),labels=df$Mc1)+

#  labs(title="Effect of Sex", x="Coefficient values",y ="")
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#geom_vline(xintercept =0, color = "black™, linetype = "dashed", alpha=.5)+
#theme_classic()
#dev.off()

#Mc2
modNames<-c("DL","halfDL","Zero","NA","C")
markerName<-"2"

parName<-"gender"

trueMc2gender<-1.7

# Create a data frame with the mean, lower, and upper values of the coefficients
coeffs <- data.frame(
modNames=c("Detection Limit","Half Detection Limit","Zero","Complete
Observations","Censored"),
mean=c(resultsMean[paste(sep="_",modNames,markerName),parName]),
lower=c(resultsquantiles2.5[paste(sep="_",modNames,markerName),parName]),
upper=c(resultsquantiles97.5[paste(sep="_",modNames,markerName),parName]))

# Use the data frame to create the table for intercept
resultsTable <- coeffs

resultsTable

# Use the data frame to create the graph
df <- coeffs
Mc2gender<- ggplot(data=df, aes(y=modNames, x=mean, xmin=lower,
Xmax=upper))+
geom_point()+
geom_errorbarh(height=.1)+
geom_vline(xintercept = trueMc2gender,lty=2,Iwd=1.25, col="darkgrey") +
labs(title="Effect of Sex", x="Coefficient values",y = "")+
geom_vline(xintercept =0, color = "black", linetype = "dashed", alpha=.5)+
theme_classic()

#df<-data.frame(
# modNames=c("DL","Half DL","Zero","Complete Observations","Censored"),

# mean=c(resultsMean[paste(sep="_",modNames,markerName),parName]),

# lower=c(resultsquantiles2.5[paste(sep="_",modNames,markerName),parName]),
# upper=c(resultsquantiles97.5[paste(sep="_",modNames,markerName),parName])
#

#)
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#png("myGraphmc2G.png",width=16,height=9,units="cm",res=300)

# Mc2gender = ggplot(data=df, aes(y=modNames, x=mean, xmin=lower,

# Xmax=upper))+

# geom_point()+

# geom_errorbarh(height=.1)+

# geom_vline(xintercept = trueMc2gender,lty=2,lwd=1.25, col="darkgrey") +
# scale_y_discrete(name ="", breaks=1:nrow(df),labels=df$Mc2)+

# labs(title="Effect of Sex", x="Coefficient values",y = "")
#geom_vline(xintercept =0, color = "black", linetype = "dashed", alpha=.5)+
#theme_classic()

#dev.off()

#Mc3
modNames<-c("DL","halfDL","Zero","NA","C")
markerName<-"3"

parName<-"gender"

trueMc3gender<-0.6

# Create a data frame with the mean, lower, and upper values of the coefficients
coeffs <- data.frame(
modNames=c("Detection Limit","Half Detection Limit","Zero","Complete
Observations","Censored"),
mean=c(resultsMean[paste(sep="_",modNames,markerName),parName]),
lower=c(resultsquantiles2.5[paste(sep="_",modNames,markerName),parName]),

upper=c(resultsquantiles97.5[paste(sep="_",modNames,markerName),parName]))

# Use the data frame to create the table for intercept
resultsTable <- coeffs

resultsTable

# Use the data frame to create the graph
df <- coeffs
Mc3gender<- ggplot(data=df, aes(y=modNames, x=mean, xmin=lower,
Xmax=upper))+
geom_point()+
geom_errorbarh(height=.1)+
geom_vline(xintercept = trueMc3gender,lty=2,lwd=1.25, col="darkgrey") +
labs(title="Effect of Sex", x="Coefficient values",y = ")+
geom_vline(xintercept =0, color = "black", linetype = "dashed", alpha=.5)+
theme_classic()

#df<-data.frame(
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modNames=c("DL","HalfDL","Zero","Complete Observation","Censored"),
mean=c(resultsMean[paste(sep="_",modNames,markerName),parName]),

lower=c(resultsquantiles2.5[paste(sep="_",modNames,markerName),parName]),
upper=c(resultsquantiles97.5[paste(sep="_",modNames,markerName),parName])

H O H H H

#)

#png("myGraphmc3G.png",width=16,height=9,units="cm",res=300)

# Mc3gender = ggplot(data=df, aes(y=modNames, x=mean, xmin=lower,

# Xmax=upper))+

# geom_point()+

# geom_errorbarh(height=.1)+

# geom_vline(xintercept = trueMc3gender,lty=2,lwd=1.25, col="darkgrey") +
# scale_y discrete(name ="", breaks=1:nrow(df),labels=df$Mc3)+

# labs(title="Effect of Sex", x="Cofficient values",y = "")
#geom_vline(xintercept =0, color = "black™, linetype = "dashed", alpha=.5)+
#theme_classic()

#dev.off()

#with age Mc1, Mc2, Mc3

#Mcl
modNames<-c("DL","halfDL","Zero","NA","C")
markerName<-"1"

parName<-"age"

trueMclage<-0.1

# Create a data frame with the mean, lower, and upper values of the coefficients
coeffs <- data.frame(
modNames=c("Detection Limit","Half Detection Limit","Zero","Complete
Observations","Censored"),
mean=c(resultsMean[paste(sep="_",modNames,markerName),parName]),
lower=c(resultsquantiles2.5[paste(sep="_",modNames,markerName),parName]),
upper=c(resultsquantiles97.5[paste(sep="_",modNames,markerName),parName]))

# Use the data frame to create the table for intercept
resultsTable <- coeffs

resultsTable

# Use the data frame to create the graph

df <- coeffs
Mclage<-ggplot(data=df, aes(y=modNames, x=mean, xmin=lower, xmax=upper))+
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geom_point()+

geom_errorbarh(height=.1)+

geom_vline(xintercept = trueMclage,lty=2,lwd=1.25, col="darkgrey") +
labs(title="Effect of Age", x="Coefficient values",y = "")+
geom_vline(xintercept =0, color = "black", linetype = "dashed", alpha=.5)+
theme_classic()

#df<-data.frame(
# modNames=c("DL","Half DL","Zero","Complete Observations","Censored"),

# mean=c(resultsMean[paste(sep="_",modNames,markerName),parName]),

# lower=c(resultsquantiles2.5[paste(sep="_",modNames,markerName),parName]),

# upper=c(resultsquantiles97.5[paste(sep="_",modNames,markerName),parName])

#

#)

#png("myGraphmclA.png",width=16,height=9,units="cm",res=300)

#Mclage = ggplot(data=df, aes(y=modNames, x=mean, xmin=lower,

# Xmax=upper))+

# geom_point()+

# geom_errorbarh(height=.1)+

# geom_vline(xintercept = trueMclage,lty=2,Ilwd=1.25, col="darkgrey") +
#scale_y discrete(name ="", breaks=1:nrow(df),labels=df$Mc1)+

# labs(title="Effect of Age", x="Coefficient values",y ="")
#geom_vline(xintercept =0, color = "black", linetype = "dashed", alpha=.5)+
#theme_classic()

#dev.off()

#Mc2
modNames<-c("DL","halfDL","Zero","NA","C")
markerName<-"2"

parName<-"age"

trueMc2age<-0.5

# Create a data frame with the mean, lower, and upper values of the coefficients
coeffs <- data.frame(
modNames=c("Detection Limit","Half Detection Limit","Zero","Complete
Observations","Censored"),
mean=c(resultsMean[paste(sep="_",modNames,markerName),parName]),
modNames,markerName),parName]),

lower=c(resultsquantiles2.5[paste(sep=
upper=c(resultsquantiles97.5[paste(sep="_",modNames,markerName),parName]))

# Use the data frame to create the table for intercept
resultsTable <- coeffs
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resultsTable

# Use the data frame to create the graph

df <- coeffs

Mc2age <- ggplot(data=df, aes(y=modNames, x=mean, xmin=lower, xmax=upper))+
geom_point()+
geom_errorbarh(height=.1)+
geom_vline(xintercept = trueMc2age,lty=2,lwd=1.25, col="darkgrey") +
labs(title="Effect of Age", x="Coefficient values",y = "")+
geom_vline(xintercept =0, color = "black", linetype = "dashed", alpha=.5)+
theme_classic()

#df<-data.frame(
#modNames=c("DL","Half DL","Zero","Complete Observations","Censored"),

#mean=c(resultsMean[paste(sep="_",modNames,markerName),parName]),
#lower=c(resultsquantiles2.5[paste(sep="_",modNames,markerName),parName]),
#upper=c(resultsquantiles97.5[paste(sep="_",modNames,markerName),parName])

#)

#png("myGraphmc2A.png",width=16,height=9,units="cm",res=300)

#Mc2age = ggplot(data=df, aes(y=modNames, x=mean, xmin=lower,

# Xmax=upper))+

# geom_point()+

# geom_errorbarh(height=.1)+

# geom_vline(xintercept = trueMc2age, lty=2,lwd=1.25, col="darkgrey") +
# scale_y discrete(name ="", breaks=1:nrow(df),labels=df$Mc2)+

# labs(title="Effect of Age", x="Coefficient values",y ="")
#geom_vline(xintercept =0, color = "black", linetype = "dashed", alpha=.5)+
#theme_classic()

#dev.off()

#Mc3
modNames<-c("DL","halfDL","Zero","NA","C")
markerName<-"3"

parName<-"age"

trueMc3age<-0.25

# Create a data frame with the mean, lower, and upper values of the coefficients
coeffs <- data.frame(
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modNames=c("Detection Limit","Half Detection Limit","Zero","Complete
Observations","Censored"),
mean=c(resultsMean[paste(sep="_",modNames,markerName),parName]),
" ,modNames,markerName),parName]),

lower=c(resultsquantiles2.5[paste(sep=
upper=c(resultsquantiles97.5[paste(sep="_",modNames,markerName),parName]))

# Use the data frame to create the table for intercept
resultsTable <- coeffs

resultsTable

# Use the data frame to create the graph

df <- coeffs

Mc3age <- ggplot(data=df, aes(y=modNames, x=mean, xmin=lower, xmax=upper))+
geom_point()+
geom_errorbarh(height=.1)+
geom_vline(xintercept = trueMc3age,Ity=2,lwd=1.25, col="darkgrey") +
labs(title="Effect of Age", x="Coefficient values",y = "")+
geom_vline(xintercept =0, color = "black", linetype = "dashed", alpha=.5)+
theme_classic()

#df<-data.frame(
# modNames=c("DL","Half DL","Zero","Complete Observations","Censored"),

# mean=c(resultsMean[paste(sep="_",modNames,markerName),parName]),
# lower=c(resultsquantiles2.5[paste(sep="_",modNames,markerName),parName]),
# upper=c(resultsquantiles97.5[paste(sep="_",modNames,markerName),parName])

#)

#png("myGraphmc3A.png",width=16,height=9,units="cm",res=300)

#Mc3age = ggplot(data=df, aes(y=modNames, x=mean, xmin=lower,

# Xmax=upper))+
#geom_point()+

#geom_errorbarh(height=.1)+

# geom_vline(xintercept = trueMc3age,lty=2,lwd=1.25, col="darkgrey") +

# scale_y_discrete(name ="", breaks=1:nrow(df),labels=df$Mc3)+

#labs(title="Effect of Age", x="Coefficient values")y ="")
#geom_vline(xintercept =0, color = "black", linetype = "dashed", alpha=.5)+
#theme_classic()
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#dev.off()
#with Exposed Mc1, Mc2, Mc3

#Mcl
modNames<-c("DL","halfDL","Zero","NA","C")
markerName<-"1"

parName<-"exposed"

trueMclexposed<-1

# Create a data frame with the mean, lower, and upper values of the coefficients
coeffs <- data.frame(
modNames=c("Detection Limit","Half Detection Limit","Zero","Complete
Observations","Censored"),
mean=c(resultsMean[paste(sep="_",modNames,markerName),parName]),
lower=c(resultsquantiles2.5[paste(sep="_",modNames,markerName),parName]),
upper=c(resultsquantiles97.5[paste(sep="_",modNames,markerName),parName])

)

# Use the data frame to create the table for intercept
resultsTable <- coeffs

resultsTable

# Use the data frame to create the graph
df <- coeffs
Mclexposed <- ggplot(data=df, aes(y=modNames, x=mean, xmin=lower,
Xmax=upper))+
geom_point()+
geom_errorbarh(height=.1)+
geom_vline(xintercept = trueMclexposed,lty=2,Ilwd=1.25, col="darkgrey") +
labs(title="Effect of Exposure", x="Coefficient values",y = ")+
geom_vline(xintercept =0, color = "black", linetype = "dashed", alpha=.5)+
theme_classic()

#df<-data.frame(
# modNames=c("DL","Half DL","Zero","Complete Observations","Censored"),

# mean=c(resultsMean[paste(sep="_",modNames,markerName),parName]),
# lower=c(resultsquantiles2.5[paste(sep="_",modNames,markerName),parName]),
#upper=c(resultsquantiles97.5[paste(sep="_",modNames,markerName),parName])
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#)

#png("myGraphmclE.png",width=16,height=9,units="cm",res=300)

#Mclexposed = ggplot(data=df, aes(y=modNames, x=mean, xmin=lower,

# xmax=upper))+

#geom_point()+

#geom_errorbarh(height=.1)+

#geom_vline(xintercept = trueMclexposed,lty=2,Ilwd=1.25, col="darkgrey") +
#scale_y discrete(name ="", breaks=1:nrow(df),labels=df$Mc1)+

# labs(title="Effect of Exposure", x="Coefficient values",y ="")
#geom_vline(xintercept =0, color = "black", linetype = "dashed", alpha=.5)+
#theme_classic()

#dev.off()

#Mc2
modNames<-c("DL","halfDL","Zero","NA","C")
markerName<-"2"

parName<-"exposed"

trueMc2exposed<-2.5

# Create a data frame with the mean, lower, and upper values of the coefficients
coeffs <- data.frame(
modNames=c("Detection Limit","Half Detection Limit","Zero","Complete
Observations","Censored"),
mean=c(resultsMean[paste(sep="_",modNames,markerName),parName]),
lower=c(resultsquantiles2.5[paste(sep="_",modNames,markerName),parName]),
upper=c(resultsquantiles97.5[paste(sep="_",modNames,markerName),parName]))

# Use the data frame to create the table for intercept
resultsTable <- coeffs

resultsTable

# Use the data frame to create the graph
df <- coeffs
Mc2exposed <- ggplot(data=df, aes(y=modNames, x=mean, xmin=lower,
Xmax=upper))+
geom_point()+
geom_errorbarh(height=.1)+
geom_vline(xintercept = trueMc2exposed,lty=2,lwd=1.25, col="darkgrey") +
labs(title="Effect of Exposure"”, x="Coefficient values")y = "")+
geom_vline(xintercept =0, color = "black", linetype = "dashed", alpha= .5)+
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theme_classic()

#df<-data.frame(
# modNames=c("DL","Half DL","Zero","Complete Observations","Censored"),

# mean=c(resultsMean[paste(sep="_",modNames,markerName),parName]),
# lower=c(resultsquantiles2.5[paste(sep="_",modNames,markerName),parName]),
# upper=c(resultsquantiles97.5[paste(sep="_",modNames,markerName),parName])

#)

#png("'myGraphMC2E.png",width=16,height=9,units="cm",res=300)

#Mc2exposed = ggplot(data=df, aes(y=modNames, x=mean, xmin=lower,

# Xmax=upper))+

# geom_point()+

# geom_errorbarh(height=.1)+

# geom_vline(xintercept = trueMc2exposed,lty=2,lwd=1.25, col="darkgrey") +
#scale_y discrete(name ="", breaks=1:nrow(df),labels=df$Mc1)+

# labs(title="Effect of Exposure", x="Coefficient values",y ="")
#geom_vline(xintercept =0, color = "black™, linetype = "dashed", alpha=.5)+
#theme_classic()

#dev.off()

#Mc3
modNames<-c("DL","halfDL","Zero","NA","C")
markerName<-"3"

parName<-"exposed"

trueMc3exposed<-5

# Create a data frame with the mean, lower, and upper values of the coefficients
coeffs <- data.frame(
modNames=c("Detection Limit","Half Detection Limit","Zero","Complete
Observations","Censored"),
mean=c(resultsMean[paste(sep="_",modNames,markerName),parName]),
lower=c(resultsquantiles2.5[paste(sep="_",modNames,markerName),parName]),
upper=c(resultsquantiles97.5[paste(sep="_",modNames,markerName),parName]))

# Use the data frame to create the table for intercept
resultsTable <- coeffs

resultsTable
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# Use the data frame to create the graph
df <- coeffs
Mc3exposed <- ggplot(data=df, aes(y=modNames, x=mean, xmin=lower,
Xmax=upper))+
geom_point()+
geom_errorbarh(height=.1)+
geom_vline(xintercept = trueMc3exposed,lty=2,Ilwd=1.25, col="darkgrey") +
labs(title="Effect of Exposure", x="Coefficient values",y = "")+
geom_vline(xintercept =0, color = "black", linetype = "dashed", alpha=.5)+
theme_classic()

#df<-data.frame(
# modNames=c("DL","Half DL","Zero","Complete Observations","Censored"),

# mean=c(resultsMean[paste(sep="_",
# lower=c(resultsquantiles2.5[paste(sep=
# upper=c(resultsquantiles97.5[paste(sep=

modNames,markerName),parName]),
" " modNames,markerName),parName]),
" " modNames,markerName),parName])

#)

#png("myGraphmc3E.png",width=16,height=9,units="cm",res=300)

#Mc3exposed = ggplot(data=df, aes(y=modNames, x=mean, xmin=lower,

# Xmax=upper))+

# geom_point()+

# geom_errorbarh(height=.1)+

# geom_vline(xintercept = trueMc3exposed,lty=2,lwd=1.25, col="darkgrey") +
# scale_y discrete(name ="", breaks=1:nrow(df),labels=df$Mc3)+

# labs(title="Effect of Exposure", x="Coefficient values",y ="")
#geom_vline(xintercept =0, color = "black™, linetype = "dashed", alpha=.5)+
#theme_classic()

#dev.off()
grid.arrange(Mclintercept, Mclgender,Mclage, Mclexposed, nrow = 2, ncol =2)
grid.arrange(Mc2Intercept, Mc2gender,Mc2age, Mc2exposed, nrow = 2, ncol =2)

grid.arrange(Mc3lIntercept, Mc3gender,Mc3age, Mc3exposed, nrow = 2, ncol =2)
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